Return to search

Electronic structure of strongly correlated low-dimensional spin ½ systems: cuprates and vanadates / Die elektronische Struktur stark korrelierter niedrig-dimensionaler Spin ½ Systeme: Kuprate und Vanadate

In the first two chapters we presented the basics of density functional theory and semiempirical LSD+U approximation, which was implemented in the full-potential local-orbital (FPLO) minimal-basis calculation scheme. In the third chapter we tested the implemented version of LSDA+U on 3d transitional metal monoxides. Essential improvement of the spectroscopic properties was obtained. A simple model describing the value and direction of the magnetic moment of a transition metal ion was presented. The model visualizes the interplay of the spin-orbit coupling and crystal field splitting. In the fourth chapter we calculated the electronic spectrum of the single Zn impurity in CuO2 plane considered as a vacancy in Cu 3d states. The analytic solution for the states of different symmetry was obtained. Depending on the strength of perturbation induced by the impurity on the neighboring Cu ions, the states are either resonant or localized. The critical values of the perturbation were computed. In the fifth chapter we presented the calculations for three novel vanadates: MgVO3, Sb2O2VO3 and VOMoO4. The tight-binding parameters and the exchange integrals were computed. The magnesium and antimony vanadates appeared to be spin-½ one-dimensional systems, the latter having much stronger one-dimensional character and being probably the best realization of inorganic spin-Peierls system. The molybdenum vanadate was found to be two-dimensional spin-½ system. The Mo 4d orbitals play an important role in the electronic transfer.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1052218731218-09287
Date06 April 2003
CreatorsTchaplyguine, Igor
ContributorsTechnische Universität Dresden, Mathematik und Naturwissenschaften, Physik, Institut für Theoretische Physik, Prof. Dr. Helmut Eschrig, Prof. Dr. Helmut Eschrig, Prof. Dr. Claudius Gros, Prof. Dr. Johannes Richter
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0022 seconds