Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-18T15:23:14Z
No. of bitstreams: 2
Tese Karoline V Fernandes.pdf: 2432359 bytes, checksum: a5e472f248ce707b5697190ca4b6d33e (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-18T15:39:54Z (GMT) No. of bitstreams: 2
Tese Karoline V Fernandes.pdf: 2432359 bytes, checksum: a5e472f248ce707b5697190ca4b6d33e (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-18T15:39:54Z (GMT). No. of bitstreams: 2
Tese Karoline V Fernandes.pdf: 2432359 bytes, checksum: a5e472f248ce707b5697190ca4b6d33e (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-09-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study surfaces M in hyperbolic space whose mean curvature H and
Gaussian curvature KI satisfy the relation 2(H 1)e2μ +KI(1e2μ) = 0; where μ is a
harmonic function with respect to the quadratic form s = KII + 2(H 1)II; and I,
II denote, respectively, the first and second quadratic form of M. These surfaces are
called Generalized Weingarten surfaces of harmonic type (HGW-surfaces). We obtain
a representation type Weierstrass for these surfaces that depend on three holomorphic
functions. As an application we obtain a representation type Weierstrass for Bryant
surfaces and classify all HGW-surfaces of rotation. / Neste trabalho estudamos superfícies M no espaço hiperbólico cuja curvatura média H e a
curvatura Gaussiana KI satisfazem a relação 2(H1)e2μ+KI(1e2μ) = 0; onde μ é uma
função harmônica com respeito a forma quadrática s = KII +2(H 1)II; onde I e II
são respectivamente a primeira e segunda forma quadrática de M. Estas superfícies serão
chamadas de Superfícies Weingarten generalizada tipo harmônico (Superfícies-WGH).
Obtemos uma representação tipo Weierstrass para estas superfícies que dependem de três
funções holomorfas. Como aplicação obtemos uma representação tipo Weierstrass para
superfícies de Bryant e classificamos as superfícies-WGH de rotação.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3088 |
Date | 20 September 2013 |
Creators | Fernandes, Karoline Victor |
Contributors | Corro, Armando Mauro Vasquez |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 6600717948137941247, 600, 600, 600, 600, -4268777512335152015, 6357880884991220629, 2075167498588264571, [1] Ahlfors, L. V.; Complex Analysis, an introduction to the theory of analytic functions of one complex variable, McGraw-Hill Book Company, 4a edição. 1966. [2] Ávila, G.; Cálculo 3, funções de várias variáveis 3a edição, Rio de Janeiro, LTC - Livros Técnicos e Científicos Editora S.A. pg 196, 1983. [3] Barbosa, J.L.M.; Colares, A.G.; Minimal Surfaces in R3 Monografias de Matemática no 40, Impa. [4] Barbosa, J.L.; Sa Earp, R.; Prescribed mean curvature hypersurfaces in Hn+1(1) with convex planar boundary, I. , Geom. Dedicata 71, 61-74, 1998. [5] Barbosa, J.L.; Sa Earp, R.; Prescribed mean curvature hypersurfaces in Hn+1 with convex planar boundary, II ,Séminaire de théorie spectrale et géometrie de Grenoble, 16, 43-79, 1998. [6] Berger, M. S.; Constant scalar curvature metrics for complex manifolds In: Proceedings of Simposia in Pure Mathematics. Amer. Math. Soc. XXVII, part2, 153-170 (1975). [7] Bianchi, R.L.; Lezioni di Geometria Differenziable, Astérique, 154-155, 1927. [8] Blaschke, W.; Vorlesungen unber Differential geometrie, 3, Springer-Verlang, Berlin, 1929. [9] Bobenko, A.; Kitaev, A.; Surfaces with Harmonic Inverse Mean Curvature and Painlevé Equations [10] Bryant, R.L.; Surfaces of Mean Curvature One in Hyperbolic Space, Astérisque,154-155, 1987. [11] Collin, P.; Hauswirth, L.; Rosenberg, H.; The geometry of finite topology Bryant Surfaces, Ann. of Math, 153, 623-659, 2001. [12] Corro, A. V.; GeneralizedWeingarten Surfaces of Bryant type in hyperbolic 3-space, XIV School on Differential Geometry (Portuguese) Mat. Contemp. 30 (2006) 71-89. [13] Corro, A. V.; Riveros, C.M.C.; Surfaces with constant Chebyshev Angle Tokyo Journal of Mathematics. Vol 35. no 2 pp 359-366. December 2012. [14] Corro, A. V.; Riveros, C.M.C.; Surfaces with constant Chebyshev Angle II preprint. [15] Corro, A. V.; Pina, R., Souza, M.; Surfaces of Rotation with Constant Extrinsic Curvature in a Conformally Flat 3-Space, Results. Math. 60 (2011), 225-234. [16] do Carmo, M.P.; Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976. [17] do Carmo, M.P.; Geometria Riemannina, Projeto Euclides, IMPA, Rio de Janeiro, 1988, 4a edição. [18] Galvão, M. E,; Góes, C.C.; A Weierstrass type representation for surfaces in hyperbolic space with mean curvature one, Note Math. 18, 1, 43-61, 1999. [19] Gálvez, J. A.; Martínez, A.; Milán, F.; Complete Linear Weingarten Surfaces of Bryant Type. A Plateau problem at infinity, Transactions of the American Mathematical Society, volume 356,9, 3405-3428, 2004. [20] Gálvez, J. A.; Martínez, A.; Milán, F.; Flat surfaces in the hyperbolic 3-space, Math. Ann. 316, 419-435. [21] Hauswirth, L.; Roitman, P.; Rosenberg, H.; The geometry of finite topology Bryant surfaces quasi-embedded in a hyperbolic manifold, J. Differential Geom., 60, 55- 101, 2002. [22] Leite, M. ; Brito, F.; Uniqueness and globality of the Liouville formula for entire solutions of ¶2 lnl ¶z¶z l 2a2 = 0, Arch. Math. 80, 501-506, 2003. [23] Li, T. Z.; Laguerre Geometry of Surfaces in R3, Acta Mathematica Sinica, Vol 21, n 06, pp 1525-1534, 2005. [24] Lima, E. L.; Curso de Análise volume 2, Projeto Euclides, Impa, Rio de Janeiro, 2008, 10a edição. [25] Liouville, J.; Sur l’équation aux differences partielles ¶2 lnl ¶z¶z l 2a2 = 0, J. Math. Pure Appl.36, 71-72,1853. [26] Miyagaki, H. O.; Equações elípticas modeladas em variedades riemannianas: uma introduçãoApresentado em Milênio Workshop em equações elípticas, 2004. [27] Musso, E.; Nicolodi, L.; A variational problem for surfaces in Laguerre geometry, Trans. Amer. Math. Soc., 348, 4321-4337, 1996. [28] Musso, E.; Nicolodi, L.; Laguerre geometry of surfaces with plane lines of curvature, Abh. Math. Sem. Univ. Hamburg, 69, 123-138, 1999. [29] Roitman, P.; Flat surfaces in hyperbolic 3-space as normal surfaces to a congruence of geodesics, preprint. [30] Roitman, P.; de Lima, L.L.; Constante mean curvature one surfaces in hyperbolic 3- space using the Bianchi-Calò method, Annals of the Brazilian Academy of Sciences, 74, 19-24, 2002. [31] Rudin, W.; Real and complex analysis, McGraw-Hill international editions, 235, 1921. 3a edição. [32] Schief, W.K.; On Laplace-Darboux-type sequences of generalized Weingarten Surfaces, Journal of Mathematical physics, V.41, 9, 6566-6599, 2000. [33] Small, A.J.; Surfaces of constant mean curvature 1 in H3 and algebraic curves on a quadric, P. Am. Math. Soc.122, 1211-1220,1994. [34] Song, Y. P.; Wang, C. P.;Laguerre Minimal Surfaces in R3, Acta Math. Sinica vol 24, 1861-1870, 2008 [35] Tenenblat, K.; Introdução à Geometria Diferencial, Editora da Unb, Brasília, 1998. 1a reimpressão. [36] Tenenblat, K,; Transformations of Manifolds and Applications to Differential Equations, International Conference on Differential Geometry, Impa, Rio de Janeiro, Julho 1996. [37] Toubiana, E.; Sa Earp, R.; Meromorphic data for mean curvature one surfaces in Hyperbolic three-space, Tohoku Math.J. 56, 1, 27-64, 2004. [38] Toubiana, E.; Sa Earp, R.; On the geometry of constant mean curvature one surfaces in hyperbolic space, To appear in Illinois Journal of Mathematics. [39] Toubiana, E.; Sa Earp, R.; Symmetry of properly embedded special Weingarten surfaces in H3 ,Trans. Am. Math. Soc. 351, 4693-4711, 1999. [40] Toubiana, E.; Sa Earp, R.; Existence and uniqueness of minimal graphs in hyperbolic space, To appear in Asian Journal of Mathematics. [41] Toubiana, E.; Sa Earp, R.; Some applications of maximum principle to hypersurfaces theory in euclidean and hyperbolic space,New Approaches in Nonlinear Analysis ( T. M. Rassias, Hadronic Press Inc, Florida, USA), 183-202, 1999. [42] Toubiana, E.; Sa Earp, R.; Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Diderot Editeur, 1997. [43] Umehara, M., Yamada, K.; A parametrization of the Weierstrass formulae and pertubation of complete minimal surfaces in R3 into the hyperbolic 3-space, J. Reine Angew. Math., 432, 93-116, 1992. [44] Umehara, M., Yamada, K.; Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space, Ann. of Math. 137, 611-638, 1993. [45] Umehara, M., Yamada, K.; Surfaces of constant mean curvature-c in H3(c2) with prescribed hyperbolic Gauss map , Math. Ann. 304, 203-224, 1996. |
Page generated in 0.0067 seconds