Strongly correlated systems represent one of the major topics in modern solid-state physics. The rare-earth intermetallic compounds belonging to this class provide rich grounds for investigation of various phenomena. They show one of the most fascinating types of ground states in condensed-matter physics. Among them are: Kondolattice effects, heavy fermion behavior, superconductivity, magnetic order, non-Fermi liquid behavior, and quantum phase transition. Those properties occur mainly due to two competing interactions, the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida interaction.
The study of unconventional superconductivity in heavy fermion systems attracted great interest over the last two decades. The exotic pairing mechanism (e.g. mediated by spin fluctuations) and the symmetry of the order parameter have been intensively discussed especially for superconducting Ce- and U-based compounds. The discovery of superconductivity below 0.65 K in the heavy-electron system CeCu2Si2 appeared unexpected as magnetic moments were known to destroy superconductivity. The pronounced anomaly of the electronic specific heat at Tc, however, strongly suggests that the unusual low temperature properties of heavy-electron systems indicate an unconventional origin of the superconducting phase. Since the discovery of superconductivity in CeCu2Si2, the question of the exact nature and origin of this phenomenon has been the subject of great interest in research. It has been postulated, that the superconductivity in these materials is not caused primarily by the usual electronphonon mechanism but rather by some magnetic interaction. CeCu2Si2 shows a rich phase diagram with different phases competing, depending on slight changes of the interactions. These properties are also strongly sample dependent. Small changes in composition eventually lead to changes in the electron interactions. These unique properties make this compound a fascinating subject of study. On the other hand it is difficult to synthesis the single crystals with defined physical properties. During the last three decades CeCu2Si2 has been an active research topic, from single crystal growth to sophisticated experiments like high-pressure measurements, neutron experiments etc. This thesis involved systematic investigations of the phase diagram, starting with the single crystal growth of different ground state and catheterized their physical properties including neutron experiments. The second part of the thesis contains, for the first time (to our knowledge), detailed investigations of the very interesting physical properties on YbRu2Ge2, which shows a quasiquartet crystalelectric-field ground state with quadrupolar ordering at 10 K.
The first chapter is an overview of the underlying physics of heavy- fermion systems, including a description of the Doniach phase diagram. The second part of this chapter gives a brief introduction of crystalline-electric-field effect in rare-earth intermetallic compounds. Chapter 2. describes the experimental methods and crystal growth details. This chapter provides the main focus of this dissertation, presenting detailed experimental results for the different types of CeCu2Si2 crystals. Magnetic, thermodynamic and transport measurements on the new generation of large highquality single crystals were conducted by our research group. Furthermore, complimentary neutron investigations have been performed, which allowed to conclude that both magnetic and superconducting phases compete with each other. The effect of Ge doping on the Si site and possible coexistence of magnetic and superconducting phase is discussed in chapter 4. Chapter 5 provides a detailed investigation of the physical properties of YbRu2Ge2 single crystals. In addition, neutron experiments as well as the determination the magnetic structure and crystalline-electric-field scheme of YbRu2Ge2 are presented. The μSR experiments were also performed as a complimentary method to the neutron experiments. Chapter 6 ends the dissertation with a conclusion and summary.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-67217 |
Date | 07 April 2011 |
Creators | Jeevan, Hirale S. |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Frank Steglich, Dr. Christoph Geibel, Prof. Dr. Frank Steglich, Prof. Dr. Z. Hossain |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0025 seconds