Return to search

An Industrial Application of Semi-supervised techniques for automatic surface inspection of stainless steel. : Are pseudo-labeling and consistency regularization effective in a real industrial context?

Recent developments in the field of Semi-Supervised Learning are working to avoid the bottleneck of data labeling. This can be achieved by leveraging unlabeled data to limit the amount of labeled data needed for training deep learning models. Semi-supervised learning algorithms are showing promising results; however, research has been focusing on algorithm development, without proceeding to test their effectiveness in real-world applications. This research project has adapted and tested some semi-supervised learning algorithms on a dataset extracted from the manufacturing en-vironment, in the context of the surface analysis of stainless steel, in collaboration with Outokumpu Stainless Oy. In particular, a simple algorithm combining Pseudo-Labeling and Consistency Regularization has been developed, inspired by the state-of-the-art algorithm Fix match. The results show some potential, because the usage of Semi-Supervised Learning techniques has significantly reduced overfitting on the training set, while maintaining a good accuracy on the test set. However, some doubts are raised regarding the application of these techniques in a real environment, due to the imperfect nature of real datasets and the high algorithm development cost due to the increased complexity introduced with these methods. / Den senaste utvecklingen inom området Semi-Supervised Learning arbetarför att undvika flaskhalsen med datamärkning. Detta kan uppnås genom att utnyttja omärkta data för att begränsa mängden märkt data som behövs för att träna modeller för djupinlärning. Semi-övervakade inlärningsalgoritmer visarlovande resultat; forskning har dock fokuserat på algoritmutveckling, utan att testa deras effektivitet i verkliga tillämpningar. Detta forskningsprojekt har anpassat och testat några semi-övervakade in-lärningsalgoritmer på en datauppsättning extraherad från tillverkningsmiljön, i samband med ytanalys av rostfritt stål, i samarbete med Outokumpu Stainless Oy. I synnerhet har en enkel algoritm som kombinerar Pseudo-Labeling och Consistency Regularization utvecklats, inspirerad av den toppmoderna algoritmen Fixmatch .Resultaten visar en viss potential, eftersom användningen av Semi-Supervised Learning-tekniker avsevärt har minskat överanpassningen av träningssetet, samtidigt som en god noggrannhet på testsetet bibehålls. Vissa tvivel reses dock angående tillämpningen av dessa tekniker i en verklig miljö, på grund av den ofullkomliga karaktären hos riktiga datauppsättningar och den höga algoritmutvecklingskostnaden på grund av den ökade komplexiteten som introduceras med dessa metoder.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-312703
Date January 2022
CreatorsZoffoli, Mattia
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:85

Page generated in 0.0027 seconds