Le projet de la thèse a consisté au développement et à l’évaluation des performances d’une mousse syntactique phénolique pour la réalisation d’un système sandwich multicouche (cœur/peau en matériau composite). Il permet d’assurer la protection thermique, mécanique et au feu en particulier contre l’impact d’un feu torche. Un feu torche peut survenir sur un site pétrochimique suite à l’inflammation d’une fuite de fluides inflammables sous pression pouvant être très dévastateur par son effet abrasif et le flux convectif et radiatif intense. Le travail s’est essentiellement axé sur l’étude de l’efficacité de la mousse syntactique phénolique à partir d’une analyse de la relation microstructure-propriété. Les exigences de mise en œuvre ont imposé une maîtrise de la formulation par une bonne compréhension de la réactivité de la résine, notamment par rapport aux différentes transformations physiques (gélification, vitrification) qui ont lieu pendant le processus de réticulation. Il s’agit alors d’optimiser le dosage des différents composés actifs et additifs vis-à-vis des contraintes de mise en œuvre afin de parvenir à des propriétés optimales du matériau final. L’efficacité de ce dernier dans les conditions normales d’utilisation a été déterminée par une phase d’expérimentation complète sur ses propriétés mécaniques, thermiques et thermomécaniques. Des tests au feu ont permis d’étudier son comportement au feu afin de vérifier ses propriétés protectrices sous l’impact d’une flamme issue d’un feu torche. Enfin, un essai instrumenté capable de reproduire en condition réelle une fuite de gaz de propane à haute pression a été mis au point pour évaluer la performance au feu torche d’un prototype industriel complet. En parallèle, un modèle numérique simplifié a été proposé afin de simuler l’impact d’un tel feu. / This work consisted in the development and the evaluation of a phenolic syntactic foam performance for the production of a multilayer sandwich system (core/skin in composite material). It ensures thermal, mechanical and fire protection, in particular against the impact of a jet fire. A jet fire can occur on a petrochemical site resulting from the combustion of a fuel continuously released under pressure. It can be very devastating for its abrasive effect and intense convective and radiative flux. The work focuses mainly on the study of the effectiveness of the phenolic syntactic foam through the analysis of the relationship microstructure-propriety. The manufacturing process requirements imposed to control the elaboration via a good understanding of the reactivity of the resin, especially in relation to various physical transformations (gelation, vitrification) that take place during the curing mechanisms. That involves optimizing the proportions of the various active compounds and additives depending on the working conditions in order to achieve optimal properties of the final material. The effectiveness of this final material under normal conditions of use was determined by a complete testing phase on its mechanical, thermal and thermomechanical properties. Fire tests were also conducted to investigate the material burning behavior to ensure its protective properties under a jet flame impact. Finally, a large-scale instrumented test, reproducing in real conditions a propane gas leak at high pressure, was developed to evaluate the resistance to a jet fire of a complete industrial prototype. In parallel, a simplified numerical model was also proposed to simulate the impact of such a fire.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEC014 |
Date | 15 April 2016 |
Creators | Bouslah, Mounia |
Contributors | Lyon, Salvia, Michelle, Benayoun, Stéphane, Descheres, Isabelle |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds