A spatial-temporal model is developed for modelling the impacts of simulated coastal zone storm surge and flooding using a combined spatial mapping and system dynamics approach. By coupling geographic information systems (GIS) and system dynamics, the interconnecting components of the spatial-temporal model are used with limited historical data to evaluate storm damage. Overlapping cumulative effects layers in GIS (ArcMap) are used for describing the coastal community’s profile, and a system dynamics feedback model (STELLA) is developed to define the interconnecting component relationships of the community. The component-wise changes to the physical environment, community infrastructure, and socioeconomic resources from the storm surge and seal level rise are examined. These changes are used to assess the impacts of the community system as a whole. For the purpose of illustrating this model, the research is applied specifically to the case of Charlottetown, Prince Edward Island, Canada, a vulnerable coastal city subject to considerable impacts from pending sea level rise and more frequent severe storm surge attributed to the changing climate in the coastal zone.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU./en#10393/19817 |
Date | 10 March 2011 |
Creators | Hartt, Maxwell |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | thesis |
Page generated in 0.0059 seconds