Return to search

Modelagem de sinais de voz via PPM, aplicada ao reconhecimento de padrões vocais patológicos. / Modeling of voice signals via PPM, applied to the recognition of pathological vocal patterns.

Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-03T19:45:39Z
No. of bitstreams: 1
HIDELGARD PAULINO BARBOSA - DISSERTAÇÃO PPGCC 2013..pdf: 11966764 bytes, checksum: 077a69b5088eea2f7109e71871f4e57d (MD5) / Made available in DSpace on 2018-08-03T19:45:39Z (GMT). No. of bitstreams: 1
HIDELGARD PAULINO BARBOSA - DISSERTAÇÃO PPGCC 2013..pdf: 11966764 bytes, checksum: 077a69b5088eea2f7109e71871f4e57d (MD5)
Previous issue date: 2013-08 / A voz é o meio de comunicação mais utilizado pelo ser humano. Porém, o sistema fonador humano é suscetível a diversos tipos de patologias que podem prejudicar a produção da voz e, consequentemente, a comunicação. Alguns tipos de exames têm sido utilizados para detectar estas patologias. Porém, eles apresentam desvantagens referentes à acurácia e ao conforto do paciente durante a aplicação, que podem desestimular a busca por tratamento. Por essa razão, técnicas computacionais têm sido
empregadas com o intuito de detectar de modo confortável e preciso a presença e o tipo de patologia apresentada pelo sistema fonador. No entanto, os resultados obtidos ainda não possibilitam sua aplicação nas clínicas, principalmente pelo fato de ainda ser considerado um número reduzido de patologias. Visando a contornar esse problema, esta pesquisa propõe uma abordagem fundamentada em um método ainda não utilizado neste
contexto: a Predição por Casamento Parcial (Prediction by Partial Matching - PPM), concebida originalmente com fins à compressão de dados. O modelo criado e mantido a partir deste método é alimentado com características acústicas, temporais e estatísticas extraídas dos sinais de voz e permite sua classificação no que se refere à identificação da
presença e do tipo de patologia a um baixo custo computacional (velocidade e recursos de armazenamento). Foram obtidos resultados satisfatórios no tocante à presença de patologias. Quanto à discriminação de patologias, os resultados sugerem um potencial do método, embora a sua aplicação ainda necessite de investigações mais aprofundadas / Voice is the most widely used means of communication of mankind. However, speech organs are susceptible to several sort of pathologies, which may harm voice production and, therefore, communication. Several techniques have been used to detect these pathologies. However, they present drawbacks related to accuracy and comfort of patients during the application, which may discourage search for treatment. Thence, computational techniques have been used in order to detect the presence and type of speech pathology comfortably and accurately. But, results are still not good enough for its application in clinics, due to the fact it is considered a small number of distinct pathologies. Aiming to solve this problem, this research proposes using a method not previously employed in classification of vocal tract diseases: Prediction by Partial Matching (PPM), originally conceived for data compression purposes. The PPM model is fed with acoustical, temporal, and statistical features, ali of them extracted from voice signals. This method allowed a satisfactory classification, concerning presence and type of pathology while requiring a low computational cost (speed and storage resources). It were obtained satisfactory results regarding presence of speech pathologies. With regard to pathologies discrimination, the results suggest that this is a highly promising technique, although its application still needs deeper investigations.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:riufcg/1343
Date03 August 2018
CreatorsBARBOSA, Hildegard Paulino.
ContributorsARAÚJO, Joseana Macêdo Fechine Régis., QUEIROZ, José Eustáquio Rangel de., COSTA, Silvana Luciene do Nascimento Cunha., GOMES, Herman Martins., MELCHER, Elmar Uwe Kurt.
PublisherUniversidade Federal de Campina Grande, PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO, UFCG, Brasil, Centro de Engenharia Elétrica e Informática - CEEI
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca de Teses e Dissertações da UFCG, instname:Universidade Federal de Campina Grande, instacron:UFCG
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds