Sedan 1900-talets mitt har användandet av tegelkonstruktioner i bostadsbyggandet minskat kraftigt; materialet har under modernismen upplevts otidsenligt och byggnadssättet har ansetts ineffektivt. Trots att kanalmurstekniken, som är en byggteknik med bärande tegelkonstruktion och högt isoleringsvärde, togs fram på 1930-talet för att följa hårdare energihushållningskrav, har ändå lätta träregelkonstruktioner dominerat det svenska småhusbyggandet. Kraven på energihushållning har under åren ökat successivt och livscykelanalysen (LCA) har utvecklats. LCA är en metodik som analyserar produkters eller tjänsters klimatbelastning ur livscykelperspektiv. Svårigheter har dock funnits i att omsätta metodiken på större komponenter än enskilda material. Därför har europastandarder tagits fram som enkom tjänar till att systematisera livscykelanalyser av hela byggnader och de kommer att följas i denna studie. Syftet med examensarbetet är att jämföra hur ett typhus med tegel som stommaterial belastar miljön under produktion och drift i en livscykel satt till 100 år, jämfört med ett motsvarande trätyphus. Till tegelhusets nackdel talar den höga energiåtgången vid materialframställningen. Trä å sin sida löper stor risk för förkortad livscykel i och med riskerna för fuktskador. För att undersöka skillnaderna i trä- och tegelkonstruktioner har en typhusritning i kanalmurskonstruktion analyserats mot en motsvarande träkonstruktion, där byggnadstyperna har samma boarea och väggkonstruktionerna samma värmemotstånd. För att få fram husens skillnad energiåtgång under driftskedet har energibehovsberäkningar utförts för byggnaderna. Livscykelanalysen har utförts i programvaran Anavitor utifrån 3D-modeller med byggnadsinformation som matchas mot en materialdatabas med livscykeldata. Ur jämförelsen har resultat kunnat hämtas på vilken av konstruktionerna som belastar miljön minst över livscykeln, med avseende på klimatbelastning räknat i koldioxidekvivalenter. Resultat visar att ett tegelhus belastar miljön dubbelt så mycket som ett trähus i produktionsfasen medan tegelhuset är miljövänligare avseende underhåll och drift. Efter 100 år är skillnaden 7,3 ton koldioxidekvivalenter, till trähusets fördel. Enligt livscykelanalysen har byggnaderna, enligt de antaganden som gjorts, belastat miljön lika efter 168 år. Till tegelhusets fördel talar dess säkerhet gällande livslängd, beständighet, fuktsäkerhet och goda möjlighet till återbruk av stommaterialet. / Since the mid-1900s has brick building marginalized; the material has in the modernist era been experienced as dated and the construction method considered inefficient. In the 1930s the canal wall technique were developed to meet the coming stringent energy requirements. Despite opportunities to meet modern building norms have yet lightweight timber structures dominated the Swedish construction sector concerning single-family houses since then. The requirements for energy conservation have increased over the years to an even greater degree, and Life Cycle Assessment (LCA) has been developed; a methodology that analyzes products from a life cycle perspective. There have been difficulties to put the methodology on larger components than individual materials. Therefore, European Standards have been developed that specifically serve to systematize Life Cycle Assessments of entire buildings, which will be followed in this study. The purpose of this study is to compare which impact a standard house with brick structure has a on the environment in a lifecycle set to 100 years, compared with a corresponding timber structure. To the disadvantage for a brick house speaks the high energy consumption in material production. Timber structures at their part are at high risk for shortened life cycle due to risk of moisture damage. To examine the differences in wood and brick structures has a standard house drawing in canal wall technique been analyzed against a corresponding wooden construction. The building types have the same floor area and the wall constructions have the same heat resistance. To receive the differences in energy use during the operational phase between the buildings has energy calculations been made. The life cycle analysis has been performed in the software Anavitor based on 3D models with building information that is matched against a database of materials life cycle data. The results from the comparison are measured in terms of carbon dioxide equivalents, and will show which construction type will make least impact on the environment. Results show that a brick house has doubled environmental impact compared to a wooden house in the production phase. The brick house is a better alternative concerning environmental impact during operational phase and maintenance. After 100 years, the difference is 7,3 tons of carbon dioxide equivalents to the advantage of the wooden house. According to the LCA and the assumptions made, the buildings have charged the environment equally after 168 years. To the advantage of the brick house speaks its longevity, durability, moisture resistance and good opportunity for reuse of the bricks.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-147615 |
Date | January 2014 |
Creators | Viborg, Tomas, Lidström, Gabriel |
Publisher | KTH, Byggteknik och design |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds