Spelling suggestions: "subject:"navitoclax"" "subject:"anaven""
1 |
Jämförande livscykelanalys av motsvarande tegel- och träkonstruktioner / Comparative Life Cycle Assessment of standard houses in corresponding brick- and timber structuresViborg, Tomas, Lidström, Gabriel January 2014 (has links)
Sedan 1900-talets mitt har användandet av tegelkonstruktioner i bostadsbyggandet minskat kraftigt; materialet har under modernismen upplevts otidsenligt och byggnadssättet har ansetts ineffektivt. Trots att kanalmurstekniken, som är en byggteknik med bärande tegelkonstruktion och högt isoleringsvärde, togs fram på 1930-talet för att följa hårdare energihushållningskrav, har ändå lätta träregelkonstruktioner dominerat det svenska småhusbyggandet. Kraven på energihushållning har under åren ökat successivt och livscykelanalysen (LCA) har utvecklats. LCA är en metodik som analyserar produkters eller tjänsters klimatbelastning ur livscykelperspektiv. Svårigheter har dock funnits i att omsätta metodiken på större komponenter än enskilda material. Därför har europastandarder tagits fram som enkom tjänar till att systematisera livscykelanalyser av hela byggnader och de kommer att följas i denna studie. Syftet med examensarbetet är att jämföra hur ett typhus med tegel som stommaterial belastar miljön under produktion och drift i en livscykel satt till 100 år, jämfört med ett motsvarande trätyphus. Till tegelhusets nackdel talar den höga energiåtgången vid materialframställningen. Trä å sin sida löper stor risk för förkortad livscykel i och med riskerna för fuktskador. För att undersöka skillnaderna i trä- och tegelkonstruktioner har en typhusritning i kanalmurskonstruktion analyserats mot en motsvarande träkonstruktion, där byggnadstyperna har samma boarea och väggkonstruktionerna samma värmemotstånd. För att få fram husens skillnad energiåtgång under driftskedet har energibehovsberäkningar utförts för byggnaderna. Livscykelanalysen har utförts i programvaran Anavitor utifrån 3D-modeller med byggnadsinformation som matchas mot en materialdatabas med livscykeldata. Ur jämförelsen har resultat kunnat hämtas på vilken av konstruktionerna som belastar miljön minst över livscykeln, med avseende på klimatbelastning räknat i koldioxidekvivalenter. Resultat visar att ett tegelhus belastar miljön dubbelt så mycket som ett trähus i produktionsfasen medan tegelhuset är miljövänligare avseende underhåll och drift. Efter 100 år är skillnaden 7,3 ton koldioxidekvivalenter, till trähusets fördel. Enligt livscykelanalysen har byggnaderna, enligt de antaganden som gjorts, belastat miljön lika efter 168 år. Till tegelhusets fördel talar dess säkerhet gällande livslängd, beständighet, fuktsäkerhet och goda möjlighet till återbruk av stommaterialet. / Since the mid-1900s has brick building marginalized; the material has in the modernist era been experienced as dated and the construction method considered inefficient. In the 1930s the canal wall technique were developed to meet the coming stringent energy requirements. Despite opportunities to meet modern building norms have yet lightweight timber structures dominated the Swedish construction sector concerning single-family houses since then. The requirements for energy conservation have increased over the years to an even greater degree, and Life Cycle Assessment (LCA) has been developed; a methodology that analyzes products from a life cycle perspective. There have been difficulties to put the methodology on larger components than individual materials. Therefore, European Standards have been developed that specifically serve to systematize Life Cycle Assessments of entire buildings, which will be followed in this study. The purpose of this study is to compare which impact a standard house with brick structure has a on the environment in a lifecycle set to 100 years, compared with a corresponding timber structure. To the disadvantage for a brick house speaks the high energy consumption in material production. Timber structures at their part are at high risk for shortened life cycle due to risk of moisture damage. To examine the differences in wood and brick structures has a standard house drawing in canal wall technique been analyzed against a corresponding wooden construction. The building types have the same floor area and the wall constructions have the same heat resistance. To receive the differences in energy use during the operational phase between the buildings has energy calculations been made. The life cycle analysis has been performed in the software Anavitor based on 3D models with building information that is matched against a database of materials life cycle data. The results from the comparison are measured in terms of carbon dioxide equivalents, and will show which construction type will make least impact on the environment. Results show that a brick house has doubled environmental impact compared to a wooden house in the production phase. The brick house is a better alternative concerning environmental impact during operational phase and maintenance. After 100 years, the difference is 7,3 tons of carbon dioxide equivalents to the advantage of the wooden house. According to the LCA and the assumptions made, the buildings have charged the environment equally after 168 years. To the advantage of the brick house speaks its longevity, durability, moisture resistance and good opportunity for reuse of the bricks.
|
2 |
Life cycle analysis and comparison of climate impact for two alternative floor systems for increased weight in high-rise timber buildingsKedem, Nir January 2022 (has links)
The aim of this Master Thesis is to investigate and quantify the climate impact for two floor system alternatives for the Cederhusen project, that is the 8 floors timber-based buildings located at Sankt Eriksplan in Stockholm. The overall motivation for this study is the fact that the construction industry is a major contributor to the total amount of the global greenhouse gas emissions. Therefore, in order to reduce these emissions new solutions, practices and applications must be adopted. An environmental attentive choice of materials used in structures has the potential of reducing the emissions. The first alternative is the existing floor system solution used by Folkhem. The second is a new type of floor system solution patented by Granab. Each floor system contains two segments: a structural part and a sub-floor part. The structural part in both alternatives contain an adding weight component to improve the dynamic performance of the relatively light weight high-rise timber buidlings. Both floor systems are thus so-called hybrid systems, where Folkhem's solution combines cross-laminated timber (CLT) and steel fiber reinforced concrete, and Granab's solution combines CLT and gravel. The specific objective was to compare the emission of greenhouse gases related to each floor system and their components by a so-called comparative life cycle assessment (LCA) methodology using a well-defined functional unit. The functional unit must consider all significant performance requirements obtained by the floor system, including load bearing capacity, dynamic performance, sound proofing, fire safety, surface flooring and maximum acceptable building height. The method of determining the climate impact is based on the “Anavitor Concept”, an innovative and digital approach to LCA calculations, to quantify and compare the environmental impact of the two floor systems through their lifetime, aiming for the user to not be an LCA expert, but to be the one who develops the design solutions, called “End-User”. Therefore, this concept performs direct LCA calculations from the BIM model by allowing access to environmental database, which contains life cycle analysis data approved and provided by LCA environmental specialists, and conveniently link material component against an industry-wide resource register receipt, called “Cross-Referencing”. The results show a significant decrease of climate impact with 33 % CO2e/m2 for the Granab’s alternative floor system compared to the existing floor system designed by Folkhem. Moreover, a direct comparison of the climate impact of Folkhem´s versus Granab´s adding weight system itself, shows a remarkable decrease of climate impact with 65 % CO2e/m2 emissions reduction for the Granab system. Thera are several reasons for these remarkably results, however, the building material selection of gravel over concrete has the greatest influence. In practice, the ability to avoid the environmental impact of cement’s manufacture process in the production stage, A1-A3, is identified as the hot spot of this study. In addition, the environmental impact results signify the importance of a wise selection of the manufacturer and their factory location, mainly by selecting a factory located as close as possible. However, in practice, there are also other factors which need to be considered when choosing a supplier. Moreover, allowing the user to not be an LCA expert but to be the one who develops the design solutions, based on the “End-User” idea in the “Anavitor Concept” applied in this study, has novel benefits. By implementing LCA analysis during the architectural and structural design process, additional quantified environmental results can be instantly considered as additional causal numerical factors in the design process and directly affect executive decisions in earlier design stages for environmental matter as well. “Anavitor Concept” is a game changer regarding LCA in the construction sector. A future where every consulting building company around the globe would have access to open verified regulated environmental database and simply with their BIM model would be able to receive immediate quantified and verified environmental impact outputs in the early stages of design by the designers themselves and not LCA expert consultant, is an environmental dream come true. The “Anavitor Concept” should be adopted and expend outside the Swedish market and the environmental database should be adapted and modified to each national construction market around the globe.
|
Page generated in 0.0401 seconds