This thesis presents a stable technique for distribution of data in Time Interleaved Digital-to-Analog Converters (TIDAC) that allows usage of the entire Nyquist bandwidth. The data distribution uses a Thiran all-pass filter to ensure stability and preserve the phase in the bandwidth of interest. Also, an online technique to compensate for the gain error mismatch in different channels and a skew error calibration technique for open loop configuration is proposed. For the over-all sampling rate of FS, i.e. bandwidth of FS/2 (according to Nyquist), this proposed technique allows calibration of skew error for input signal for most of the Nyquist bandwidth where frequency translation is applied to the input signal to provide calibration in the lower half of the Nyquist band. The simulation results for a 2-channel 14-bit current steering binary weighted TIDAC shows a substantial improvement in SNDR after calibration for input signals up to Nyquist frequency.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/12994 |
Date | 27 July 2010 |
Creators | D'souza, Rowena Joan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Page generated in 0.0016 seconds