La continuité a un statut compliqué pour Deleuze et Leibniz. Chez Leibniz, la continuité est omniprésente dans ses mathématiques et sa métaphysique, mais il est aussi le théoricien de l'individualité absolue des monades, qui peuvent être interprétées comme des discontinuités irréductibles. Chez Deleuze, le champ Idéal est parfois considéré comme une continuité, mais il se caractérise aussi par une affirmation de divergence (et d'incompossibilité), qui pourrait impliquer une sorte de discontinuité dans l'ordre virtuel. Cette étude aborde ce problème chez les deux penseurs et révèle le rôle de la continuité dans leur métaphysique. En effet, un concept deleuzien de continuité est reconstitué en explorant Le pli, Différence et répétition, et Logique du sens. Il est montré comment la continuité (chez les deux penseurs), en tant que concept mathématique, se transforme en une notion métaphysique indispensable à la philosophie de l'événement de Deleuze.
Cette recherche développe les nuances conceptuelles d'une notion deleuzienne de continuité et identifie ses différents types, à savoir la continuité divergente, la continuité intensive, la continuité torsionnelle et la continuité ten(or)sionnelle. Cette analyse permet de mettre au premier plan la correspondance architectonique de la métaphysique de Deleuze dans ces trois livres, une architecture empreinte de continuité et de pli. / Continuity has a complicated status for Deleuze and Leibniz. For Leibniz, continuity is prevalent in his mathematics and metaphysics, but he is also known to be the theoretician of the absolute individuality of monads, which can be interpreted as irreducible discontinuities. For Deleuze, the Ideal field is sometimes regarded as continuity, but it is also characterized by an affirmation of divergence (and incompossibility), which might imply a kind of discontinuity in the virtual order. This study engages with this problem in both thinkers and discloses the role of continuity in their metaphysics. Indeed, a Deleuzian concept of continuity is reconstituted while exploring The Fold, Difference and Repetition, and Logic of Sense. It is shown how continuity (in both thinkers), as a mathematical concept, turns into a metaphysical notion that is indispensable for Deleuze’s philosophy of event.
This research unfolds the conceptual nuances of a Deleuzian notion of continuity and identifies its different types, namely, divergent continuity, intensive continuity, torsional continuity, and ten(or)sional continuity. This analysis allows us to foreground the architectonic correspondence of Deleuze's metaphysics in these three books, an architecture imbued with continuity and fold.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32124 |
Date | 06 1900 |
Creators | Movahedi Pour, Hamed |
Contributors | Leduc, Christian, W. Smith, Daniel |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0023 seconds