Return to search

Etude structurale et fonctionnelle de MraY, enzyme membranaire essentielle à la biosynthèse du peptidoglycane bactérien / Structural and Functional Studies of MraY, a membrane enzyme essential for the bacterial peptidoglycan Biosynthesis

La résistance bactérienne aux antibiotiques est un problème majeur de santé publique. Un moyen de la combattre est de viser des cibles non encore exploitées pour retarder l’apparition de la résistance. Dans ce contexte, nous avons entrepris la caractérisation sur les plans biochimique et structural de l’enzyme MraY, une protéine intégrale de membrane, membre d’une famille de transférases membranaires. MraY catalyse la première étape membranaire de la biosynthèse du peptidoglycane bactérien à savoir, le transfert du motif N-acétylmuramoyl-pentapeptide du précurseur cytoplasmique UDP-MurNAc-pentapeptide sur le transporteur membranaire, l’undécaprényl-phosphate aboutissant à la formation du lipide I. Aucune structure 3D de cette enzyme n’est disponible actuellement et aucun antibiotique en utilisation clinique ne la cible. D’une part nous avons entrepris la caractérisation structurale de cette enzyme par des approches de biophysique. Des essais de cristallisation 2D dans des systèmes membranaires ont permis d’observer au microscope électronique des dimères de MraY (taille de 70Å/50Å). Des expériences de diffusion des rayons X (SAXS) montrent un rayon de giration d’environ 42Å. Les résultats issus des expériences de SAXS ont été combinés à des approches de modélisation afin déterminer l’état d’oligomérisation de cette protéine en présence de détergents. Enfin, en vue de faciliter la cristallogenèse 3D, des chimères de MraY en fusion avec des protéines hydrosolubles de structure 3D résolues (mCherry et GFP) ont été construites. Des essais de cristallisation de la protéine seule et des chimères construites ont été effectués.D’autre part, nous avons élucidé le mécanisme catalytique de l’enzyme MraY et de son paralogue WecA. Au cours de ma thèse, j’ai pu montrer que cette famille de transférase membranaire présente un mécanisme catalytique commun qui procède en une seule étape par attaque directe d’un oxyanion du substrat lipidique, préalablement déprotoné par un résidu aspartate invariant, sur le phophate Beta du substrat nucléotidique. Cela conduit à la formation du produit lipidique et libération de l’UMP. / The growing emergence of multiresistance of pathogenic bacteria to currently used antibiotics is a major public health problem that requires the development of new therapeutic compounds and the identification and exploitation of novel targets. In this context, we undertook the biochemical and structural characterization of MraY enzyme, an integral membrane protein, member of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily. The MraY transferase catalyzes the first membrane step of bacterial cell wall peptidoglycan biosynthesis, namely the transfer of the N-acetylmuramoyl-pentapeptide moiety of the cytoplasmic precursor UDP-MurNAc-pentapeptide to the membrane transporter undecaprenyl phosphate, yielding C55-PP-MurNAc-pentapeptide (lipid I). To date, no crystal structure has been reported for this enzyme. On the one hand we have undertaken the structural characterization of this enzyme by differents biophysical approaches. Electron microscopic images after two-dimensional crystallization of the protein displayed a dimeric organisation of the MraY enzyme (size 70Å/50Å). Small X-ray scattering (SAXS) experiments have shown a radius of gyration of about 42A. The results of SAXS experiments were combined with modeling approaches to determine the oligomerization state of the protein in the presence of detergents. Finally, in order to facilitate 3D crystallisation of MraY, fusion proteins of MraY and mCherry/GFP were constructed. Crystallization trials of MraY alone and the constructed chimeras were made. On the other hand, we have elucidated the catalytic mechanism of the MraY transferase and its paralog WecA. In this study, we have shown that this family of membrane transferases has a common catalytic mechanism that proceeds by a single step displacement. During this “one-step” mechanism, the oxyanion of the poly-prenyl phosphate attacks the β phosphate of the nucleotide substrate, leading to the formation of lipid product and the liberation of UMP.

Identiferoai:union.ndltd.org:theses.fr/2013PA114809
Date27 March 2013
CreatorsOlatunji, Samir
ContributorsParis 11, Bouhss, Ahmed
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0023 seconds