Return to search

Analyse multifractale et simulation des fluctuations de l'énergie éolienne

A partir des équations gouvernant le champ de vitesse, on peut non seulement s'attendre à un vent (fortement) non-gaussien, mais aussi à un vent présentant un comportement scalant. Par 'scalant' ou invariant d'échelle, nous faisons référence à un comportement statistique auto-similaire particulier; les cascades de tourbillons. Les multifractales stochastiques (avec des singularités et des co-dimensions multiples) reproduisent facilement le comportement scalant et les distributions de probabilités à queues épaisses omniprésentes dans le vent et dont la quantification est essentielle pour la communauté. Les quelques paramètres qui définissent ces modèles peuvent être déduits soit de considérations théoriques, soit de l'analyse statistique de données. Nous avons constaté que les approximations de flux basées sur le module du cisaillement du vent donnent des moments statistiques non-scalants et donc des estimations faussées des paramètres multifractals. La méthode DSF n'exige pas cette approximation et garantit un comportement scalant sur une certaine gamme d'échelles. Nous n'avons trouvé aucune estimation véritablement stable d'alpha en utilisant des méthodes standards. Ceci n'arrive plus quand nous optimisons localement (par la différenciation fractionnaire) le comportement scalant du DTM. Nous obtenons alors des estimations très stables de l'indice de multifractalité qui sont en outre en accord (alpha ≤ 2) avec des résultats publiés. Au contraire, les deux autres paramètres (C1 et H) deviennent des fonctions non-linéaires de l'ordre q des moments statistiques. Ces résultats suggèrent que le modèle UM isotrope ne peut être utilisé pour reproduire le cisaillement de vent dans la couche de surface atmosphérique. Lesdites hypothèses sont examinées en utilisant un repère tournant pour analyser l'anisotropie de la vitesse horizontale dans la couche de surface atmosphérique. Cela permet de quantifier la dépendance angulaire de l'exposant de Hurst. Les valeurs de cet exposant restent tout de même conformes aux résultats précédemment publiés. Pour des échelles de temps supérieures à quelques secondes, les deux jeux de données présentent une anisotropie scalante forte, qui décroît avec l'altitude. Nous mettons en évidence une expression analytique de la variation angulaire de l'exposant de Hurst, reposant sur les corrélations entre les composantes horizontales. Ceci pilote la formation des extrêmes du cisaillement, y compris dans le sillage d'une éolienne. Les cisaillements turbulents du vent sont si extrêmes que leur loi de probabilité est une loi de puissance. L'exposant correspondant (qD) est similaire pour les deux sites à une hauteur de 50m (4 ≤ qD ≤ 5), malgré des conditions orographiques très différentes. Nous discutons aussi de ses conséquences en analysant la stabilité de la couche limite atmosphérique et proposons une nouvelle méthode pour sa classification. Enfin, nous démontrons analytiquement que l'anisotropie augmente la probabilité des extrêmes. Ce résultat met en lumière un des nombreux mécanismes de turbulence possibles dans la couche de surface qui peut apparemment surproduire les cisaillements extrêmes du vent, s'ils sont étudiés dans le cadre des UM isotropes. Nous en analysons théoriquement les conséquences sur les estimations des paramètres multifractales par la méthode DTM. Les résultats analytiques obtenus sont en parfait accord avec les observations empiriques. Nous discutons alors de la prise en compte de toutes ces considérations pour faire des simulations multifractales des champs du vent dans la couche limite atmosphérique

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00962318
Date16 September 2013
CreatorsFitton, George
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds