Return to search

Difusão anômala: transição entre os regimes localizado e estendido na caminhada do turista unidimensional / Anomalous Diffusion: Transition between the Localized and Extended Regimes in the One Dimensional Tourist Walk

Considere um meio desordenado formado por $N$ pontos cujas coordenadas são geradas aleatoriamente com probabilidade uniforme ao longo das arestas unitárias de um hipercubo de $d$ dimensões. Um caminhante, partindo de um ponto qualquer desse meio, se desloca seguindo a regra determinista de dirigir-se sempre ao ponto mais próximo que não tenha sido visitado nos últimos $\\mu$ passos. Esta dinâmica de movimentação, denominada caminhada determinista do turista, leva a trajetórias formadas por uma parte inicial transiente de $t$ pontos, e uma parte final cíclica de $p$ pontos. A exploração do meio se limita aos $t+p$ pontos percorridos na trajetória. O sucesso da exploração depende do valor da memória $\\mu$ do viajante. Para valores pequenos de $\\mu$ a exploração é altamente localizada e o sistema não é satisfatoriamente explorado. Já para $\\mu$ da ordem de $N$, aparecem ciclos longos, permitindo a exploração global do meio. O objetivo deste estudo é determinar o valor de memória $\\mu_1$ para o qual ocorre uma transição abrupta no comportamento exploratório do turista em meios unidimensionais. Procuramos também entender a distribuição da posição final do turista após atingir um estado estacionário que é atingido quando o turista fica aprisionado nos ciclos. Os resultados obtidos por simulações numéricas e por um tratamento analítico mostram que $\\mu_1 = \\log_2 N$. O estudo também mostrou a existência de uma região de transição com largura $\\varepsilon = e/ \\ln 2$ constante, caracterizando uma transição aguda de fase no comportamento exploratório do turista em uma dimensão. A análise do estado estacionário da caminhada em função da memória mostrou que, para $\\mu$ distante de $\\mu_1$, a dinâmica de exploração ocorre como um processo difusivo tradicional (distribuição gaussiana). Já para $\\mu$ próximo de $\\mu_1$ (região de transição), essa dinâmica segue um processo superdifusivo não-linear, caracterizado por distribuições $q$-gaussianas e distribuições $\\alpha$-estáveis de Lévy. Neste processo, o parâmetro $q$ funciona como parâmetro de ordem da transição. / Consider a disordered medium formed by $N$ point whose coordinates are randomly generated with uniform probability along the unitary edges of a $d$-dimensional hypercube. A walker, starting to walk from any point of that medium, moves following the deterministic rule of always going to the nearest point that has not been visited in the last $\\mu$ steps. This dynamic of moving, called deterministic tourist walk, leads to trajectories formed by a initial transient part of $t$ points and a final cycle of $p$ points. The exploration of the medium is limited to the $t+p$ points covered. The success of the exploration depends on the traveler\'s memory value $\\mu$. For small values of $\\mu$, the exploration is highly localized and the whole system remains unexplored. For values of $\\mu$ of the order of $N$, however, long cycles appear, allowing global exploration of the medium. The objective of this study is to determine the memory value $\\mu_1$ for which a sharp transition in the exploratory behavior of the tourist in one-dimensional media occurs. We also want to understand the distribution of the final position of the tourist after reaches a steady state in exploring the medium. That steady state is reached when the tourist is trapped in cycles. The results achieved by numerical simulations and analytical treatment has shown that $\\mu_1 = \\log_2 N$. The study has also shown the existence of a transition region, with a constant width of $\\varepsilon = e/ \\ln 2$, characterizing a phase transition in the exploratory behavior of the tourist in one dimension. The analysis of the walk steady state as a function of the memory has shown that for $\\mu$ far from $\\mu_1$, the exploratory dynamic follows a traditional diffusion process (with gaussian distribution). In the other hand, for $\\mu$ near $\\mu_1$ (transition region), the dynamic follows a non-linear superdiffusion process, characterized by $q$-gaussian distributions and Lèvy $\\alpha$-stable distributions. In this process, the parameter $q$ plays the role of a transition order parameter.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02022007-115428
Date05 September 2006
CreatorsGonzalez, Rodrigo Silva
ContributorsMartinez, Alexandre Souto
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0031 seconds