Return to search

Vaizdo kontūrų nustatymo būdų analizė / Analysis of Ways to Detect Image Contour

Vaizdo kontūrų nustatymo metodų tyrimui buvo pasirinktas 100 įvairaus turinio paveikslų su įvairiu elementų dydžiu ir skaičiumi. Tyrimui buvo pasirinkti 8 populiariausi vaizdo kontūrų nustatymo metodai: Canny, Sobel, Prewitt, Roberts, Zerocross, Laplacian, LoG, Marr-Hildreth. Atliekant tyrimus visiems paveikslams, naudojant visus 8 metodus, buvo subjektyviai parinkta optimaliausia slenkstinė reikšmė. Gavus visų 100 įvairių paveikslų geriausias slenkstines reikšmes su visais 8 metodais, buvo nustatytos slenkstinių reikšmių kitimo ribos kiekvienam kontūro išskyrimo metodui. Kiekvienam paveikslui buvo pritaikyta vidutiniškai 10 slenkstinių reikšmių ir kiekvienam paveikslui buvo suskaičiuotas vidutinis kvadratinis nuokrypis (RMSE, Root Mean Square Error) su geriausiu pasirinktu kontūru. / One hundred various pictures with different size and number of elements were chosen for the method research of image outline evaluation. All these pictures were converted into grayscale pictures. Most of edge detection methods (filters) required to be blurred to reduce noise. Eight the most popular methods were chosen to evaluate the image outline: Canny, Sobel, Prewitt, Roberts, Zerocross, Laplacian, LoG, Marr-Hildreth. A Root Mean Square Error (RMSE) was computed for each edge picture with the best-chosen outline.

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2008~D_20080929_113638-76811
Date29 September 2008
CreatorsLaskauskas, Ramūnas
ContributorsDaunys, Gintautas, Laurutis, Remigijus, Laurutis, Vincas, Lauruška, Vidas, Dapkus, A., Dervinis , Donatas, Vyšniauskas, Vytautas, Siauliai University
PublisherLithuanian Academic Libraries Network (LABT), Siauliai University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageUnknown
TypeMaster thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080929_113638-76811
RightsUnrestricted

Page generated in 0.0023 seconds