Return to search

ECOEFICIÊNCIA EM SISTEMAS DE PRODUÇÃO DE FRANGOS DE CORTE

Submitted by Michel Decian Carvalho (micheldecian@outlook.com) on 2019-01-25T19:33:28Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Ecoeficiência em sistemas de produção de frangos de corte.pdf: 2316978 bytes, checksum: 73c26d3d5c3921fc687fb53c493beb9b (MD5) / Approved for entry into archive by Lucas Paganine (lucaspaganine@ibict.br) on 2019-02-05T17:10:17Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Ecoeficiência em sistemas de produção de frangos de corte.pdf: 2316978 bytes, checksum: 73c26d3d5c3921fc687fb53c493beb9b (MD5) / Made available in DSpace on 2019-02-05T17:10:17Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Ecoeficiência em sistemas de produção de frangos de corte.pdf: 2316978 bytes, checksum: 73c26d3d5c3921fc687fb53c493beb9b (MD5)
Previous issue date: 2018 / The consumption of chicken meat as a source of animal protein is increasing. Largescale confinement systems are responsible for meeting this demand. As a result, the
consumption of inputs and the environmental changes that these systems provide intensify. The production chain of Brazilian broiler chicken is characterized by a system of integration
between producer and the agroindustry, and both are inserted in a globalized market, where the imported inputs and export much of the production is exported to foreign markets. To evaluate the economic and environmental performance of production systems responsible for representing this food supply, an eco-efficiency assessment was made. The eco-efficiency assessment addressed two methods for quantifying environmental impacts and valuation of product systems, Life Cycle Assessment (LCA) and Economic Value Added (EVA). The approach comprised the stages of agricultural production, breeding and fattening of chickens.
Four products in three different systems were evaluated, Griller, Broiler and heavy broiler
chickens produced in Negative pressure automated dark house aviaries, and the same chickens produced in Conventional positive pressure aviaries. Also, for comparison an alternative system of positive pressure was used to represent the production of organic chickens that serves a niche market but receives attention for studies in other countries. The Functional Unit (UF) was 1 kg of live chicken ready to be shipped to the slaughterhouse, and the method for Life Cycle Impact Assessment (AICV) was done with CML 2. The results showed that most of the impacts comes from the agricultural stage of grain production for the rations, and from the use of electric power to feed the equipment of the barracks. Conventional systems presented negative results for the generation of economic value and environmental impacts like the Dark House systems.
Chickens produced in organic systems positively outperformed the other products in terms of economic valuation but had results of potential environmental impact much higher. It was
possible to conclude that for conventional systems special attention needs to be paid regarding the return on investment, especially in relation to rates for capital remuneration, to provide new ventures that, in addition to smaller environmental impacts, can also generate greater economic profit. / O consumo da carne de frango como fonte de proteína animal é crescente em todo
mundo. Os sistemas de produção de confinamento em larga escala são responsáveis por atender
essa demanda. Em função disso o consumo de insumos e as trocas ambientais que estes sistemas
proporcionam se intensificam. A cadeia produtiva do frango de corte no Brasil é caracterizada
em sua maioria por sistemas de integração entre produtores e agroindústrias, e estão inseridos
em um mercado globalizado onde importam insumos e exportam boa parte da produção para
mercados externos. Para avaliar o desempenho econômico e ambiental dos sistemas de
produção responsáveis por representar essa oferta de alimentos, uma avaliação de ecoeficiência
foi feita. A avaliação de ecoeficiência abordou dois métodos para quantificar os impactos
ambientais e a valoração dos sistemas de produto, a Avaliação do Ciclo de Vida (ACV) e o
Valor Econômico Agregado (EVA). A abordagem foi do berço ao portão dos aviários,
compreendendo as etapas de produção agrícola, fábrica de ração e engorda dos frangos. Quatro
produtos em três sistemas diferentes foram avaliados, os frangos Griller, Broiler e pesados
produzidos em aviários automatizados de pressão negativa Dark House, e os mesmos frangos
produzidos em aviários de pressão positiva convencionais. Ainda para comparação, um sistema
alternativo de pressão positiva foi utilizado representando a produção de frangos orgânicos que
atende um determinado nicho de mercado e recebe atenção para estudos similares em outros
países. A Unidade Funcional (UF) usada é de 1 kg de frango vivo pronto para embarcar para o
abatedouro, e a Análise de Impacto do Ciclo de Vida (AICV) foi feita com o método CML 2
baseline. Os resultados mostraram que a maior parte dos impactos vem da etapa agrícola da
produção de grãos usados na fabricação das rações, e por seguinte do uso de energia elétrica
para alimentar os equipamentos dos aviários. Os sistemas convencionais apresentaram
resultados negativos para geração de valor econômico e impactos ambientais similares aos
sistemas Dark House. Os frangos produzidos em sistemas orgânicos superaram positivamente
os demais produtos quanto a valoração econômica, mas tiveram resultados de potencial impacto
ambiental muito acima em todas as categorias de impacto analisadas. Foi possível concluir que
para sistemas convencionais uma atenção especial precisa ser dada quanto ao retorno dos
investimentos, principalmente com relação as taxas para remuneração do capital, de forma a
proporcionar a novos empreendimentos que além de impactos ambientais menores também
possam gerar maior lucro econômico.

Identiferoai:union.ndltd.org:IBICT/oai:deposita.ibict.br:deposita/36
Date January 2018
CreatorsDecian, Michel
Contributorshttp://lattes.cnpq.br/0413070608488067, Ruviaro, Clandio, Garcia, Rodrigo
PublisherUNIVERSIDADE FEDERAL DA GRANDE DOURADOS, Programa de pós graduação em agronegócios, Brasil, Faculdade de Administração Ciências Econômicas e Contábeis
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Comum do Brasil - Deposita, instname:Instituto Brasileiro de Informação Ciência e Tecnologia, instacron:IBICT
Rightshttp://creativecommons.org/licenses/by-nd/4.0/, info:eu-repo/semantics/openAccess
RelationABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14040: Gestão ambiental – Avaliação do ciclo de Vida – Princípios e estrutura. Rio de Janeiro, 2009 a. ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14044: Gestão ambiental – Avaliação do ciclo de Vida – Requisitos e orientações. Rio de Janeiro, 2009 b. ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14045: Avaliação da ecoeficiência de sistemas de produto — Princípios, requisitos e orientações. Rio de Janeiro, 2014. ABPA. Relatório Anual 2017. Associação Brasileira de Proteína Animal, p. 134, 2017. Disponível em: <http://abpa-br.com.br/setores/avicultura/publicacoes/relatorios-anuais/2017>. Acesso em: 28 abr. 2017 ABREU, Valéria Maria Nascimento; ABREU, Paulo Giovanni de. Os desafios da ambiência sobre os sistemas de aves no Brasil. Revista Brasileira de Zootecnia. [concórdia], p. 1-14. jan. 2011. Disponível em: <https://www.alice.cnptia.embrapa.br/bitstream/doc/901939/1/osdesafiosdaambienciasobreos sistemas.pdf>. Acesso em: 17 abr. 2017. AFZ, Ajinomoto Eurolysine, Aventis Animal Nutrition, INRA, ITCF. AmiPig, Digestibilidade ileal estandarizada de aminoácidos em ingredientes para rações de suínos. França, 2000. AGRI-FOOTPRINT, Blonk. Agri-footprint 2.0 – Part 2: Description of data. Gouda, Holanda, 2015. AIKING, Harry. Future protein supply. Trends in Food Science & Technology, v. 22, n. 2–3, p. 112-120, 2011. ALEXANDRATOS, Nikos et al. World agriculture towards 2030/2050: the 2012 revision. FAO, Roma: ESA Working paper, 2012. ALIG, Martina et al. Life cycle assessment of beef, pork and poultry. Agroscope ReckenholzTänikon ART, Zurique, Suíça, p. 1-8, 2012. AMON, Barbara et al. Manure management. EMEP/EEA air polutant emission inventory guidebook v. 625, p. 209–219 , 2016. AVILA, Valdir Silveira De; SOARES, João Paulo Guimarães. Produção de ovos em sistema orgânico. Concórdia: EMBRAPA suínos e aves, p. 104, 2010. AVINUTRI. Sistema Dark House de produção de frangos de corte: vantagens e desvantagens. 2017. Disponível em: <http://avinutri.com/sistema-dark-house-de-producaode-frangos-de-corte-vantagens-e-desvantagens/>. Acesso em: 10 maio 2017. BARRANTES, Leticia De Santi et al. Benefits of Agricultural Cropping System for Brazilian Bioproducts: The Soybean-Winter Maize LCA. CILCA - Conferencia Internacional de Análisis de Ciclo de Vida en Latinoamérica, Medelin, Colômbia, p. 1–6, 2017.96 BARRANTES, Leticia De Santi. Avaliação do desempenho ambiental da produção de biomassa florestal com finalidades energéticas no Brasil: Caso de Itapeva. 2016. 182 f. Dissertação (Mestrado em Engenharia) – Programa de Pósgraduação em Engenharia Mecânica e de Materiais, Universidade Tecnológica Federal do Paraná. Curitiba, 2016. BEDDINGTON, John R. et al. Achieving food security in the face of climate change: Final report from the Commission on Sustainable Agriculture and Climate Change. 2012. BENGTSSON, Jonas; SEDDON, Julia. Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. Journal of Cleaner Production, v. 41, p. 291-300, 2013. BNDES (Banco Nacional de Desenvolvimento Econômico e Social). Brasil. Programa de Modernização da Agricultura e Conservação dos Recursos Naturais – MODERAGRO: CIRCULAR SUP/AOI Nº 21/2017-BNDES. 2017. BNDES AUTOMÁTICO e BNDES FINAME. Disponível em: <https://www.bndes.gov.br/wps/wcm/connect/site/97532f06-0614- 4c1e-9aca-56287a8d22c9/17Cir21+MODERAGRO+Ano+Agrícola+2017- 2018.pdf?MOD=AJPERES&CVID=m8xv1c8>. Acesso em: 05 jan. 2018. BOGGIA, A.; PAOLOTTI, L.; CASTELLINI, C. Environmental impact evaluation of conventional, organic and organic-plus poultry production systems using life cycle assessment. World's Poultry Science Journal, v. 66, n. 1, p. 95-114, 2010. BOLAND, Mike J. et al. The future supply of animal-derived protein for human consumption. Trends in Food Science & Technology, v. 29, n. 1, p. 62-73, 2013. BRUNDTLAND, Gro Harlem. Report of the World Commission on environment and development:" our common future.". United Nations, 1987. CARVALHO, Rafael Humberto et al. The effects of the Dark House system on growth, performance and meat quality of broiler chicken. Animal Science Journal, v. 86, n. 2, p. 189- 193, 2015. CASTELLINI, Cesare et al. A multicriteria approach for measuring the sustainability of different poultry production systems. Journal of Cleaner Production, v. 37, p. 192-201, 2012. CEDERBERG, Christel et al. Greenhouse gas emissions from Swedish production of meat, milk and eggs 1990 and 2005. SIK Report No 793, Swedish Institute for Food and Biotechnology, Suécia, 2009. CESARI, V. et al. Environmental impact assessment of an Italian vertically integrated broiler system through a Life Cycle approach. Journal of Cleaner Production, v. 143, p. 904-911, 2016. CIDASC. Companhia Integrada de Desenvolvimento AgrÍcola de Santa Catarina. Custos de produção de frangos de corte e de suínos voltam a subir em setembro. 2013. Material cedido pela Embrapa Suínos e Aves de Concórdia/SC. Disponível em: <http://www.cidasc.sc.gov.br/blog/2013/10/25/custos-de-producao-de-frangos-de-corte-e-desuinos-voltam-a-subir-em-setembro/>. Acesso em: 23 ago. 2017.97 CLUNE, Stephen; CROSSIN, Enda; VERGHESE, Karli. Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production, v. 140, p. 766– 783, 2016. COSTA, Fernando Guilherme Perazzo et al. Scientific progress in the production of monogastric in the first decade of the twenty-first century. Revista Brasileira de Zootecnia, v. 39, p. 288-302, 2010. DE VRIES, M. de; VAN MIDDELAAR, C. E.; DE BOER, I. J. M. Comparing environmental impacts of beef production systems: A review of life cycle assessments. Livestock Science, v. 178, p. 279-288, 2015. DONG, Hongmin et al. Emissions from livestock and manure management, CHAPTER 10. IPCC Guidelines for National Greenhouse Gas Inventories, 2006. EEA - European Environment Agency, (Copenhagen, Denmark) MAKING SUSTAINABILITY ACCOUNTABLE: ECO-EFFICIENCY, RESOURCE PRODUCTIVITY AND INNOVATION, 1998,. Proceedings of a workshop on the Fifth Anniversary of the European Environment Agency (EEA). European Environment Agency (EEA) And The Factor-10-institute, 1999. 39 p. Disponível em: <https://www.eea.europa.eu/publications/Topic_report_No_111999>. Acesso em: 25 jan. 2018. EHRENFELD, John R. Eco-efficiency: Philosophy, Theory, and Tools. Journal of Industrial Ecology, v. 9, n. 4, p. 6-8, 2005. ELLINGSEN, Harald; AANONDSEN, Svein Aanond. Environmental impacts of wild caught cod and farmed Salmon-a comparison with chicken. The International Journal of Life Cycle Assessment, v. 11, n. 1, p. 60-65, 2006. EPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (WASHINGTON, EUA). Glossary of Sustainable Manufacturing Terms: Eco-efficiency Analysis. 2017. Disponível em: <https://www.epa.gov/sustainability/glossary-sustainable-manufacturingterms#E>. Acesso em: 25 jan. 2018. FAO, IFAD e WFP (2015), The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Food and Agriculture Organization Publications, Roma, 2016. Disponível em: <http://www.fao.org/3/a4ef2d16- 70a7-460a-a9ac-2a65a533269a/i4646e.pdf>. Acesso em: 25 set. 2017. FOLEGATTI-MATSUURA, M. I. S.; PICOLI, J. F.; BARRANTES, L. D. S. ; MAY, A.; HIRAKURI, M. H.; CASTRO, C. de. Life Cycle Inventories of Grains Production in Brazil. Jaguariúna. Empresa Brasileira de Pesquisa Agropecuária, 2017. FOLEY, J. A. et al. Solutions for a cultivated planet. Nature, v. 478, n. 7369, p. 337–42, 2011. FRAVAL, Simon; LANNERSTAD, Mats; RIDOUTT, Brad. Review of life-cycle assessments of livestock production: perspectives for application to environmental impact assessment in developing countries, Nairobi: ILRI, 2015.98 GERBER, P.; OPIO, C.; STEINFELD, H. Poultry production and the environment-A review. FAO, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla. Roma, Itália, v. 153, p. 1–27, 2007. GLATZ, Phil; PYM, Robert. Poultry housing and management in developing countries. Poultry development review. Food and Agriculture Organization of the United Nations, Roma, p. 24-43, 2013. GODFRAY, H. Charles J. et al. Food security: the challenge of feeding 9 billion people. Science, v. 327, n. 5967, p. 812-818, 2010. GONZÁLEZ-GARCÍA, Sara et al. Life Cycle Assessment of broiler chicken production: a Portuguese case study. Journal of cleaner production, v. 74, p. 125-134, 2014. GUINEE, Jeroen B. et al. Life cycle assessment: past, present, and future. Environmental science & technology, v. 45, n. 1, p. 90–96, 2011. GUINEE, Jeroen B. Handbook on life cycle assessment operational guide to the ISO standards. The international journal of life cycle assessment, v. 7, n. 5, p. 311, 2002. HAUSCHILD, Michael Z. et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, v. 18, n. 3, p. 683-697, 2013. HOLDEN, Erling; LINNERUD, Kristin; BANISTER, David. The imperatives of sustainable development. Sustainable Development, v. 25, n. 3, p. 213-226, 2017. HUPPES, Gjalt; ISHIKAWA, Masanobu. Eco‐efficiency and Its Terminology. Journal of Industrial Ecology, v. 9, n. 4, p. 43-46, 2005. KALHOR, Talayeh et al. Environmental impact assessment of chicken meat production using life cycle assessment. Information Processing in Agriculture, v. 3, n. 4, p. 262-271, 2016. KATAJAJUURI, Juha-Matti et al. Environmental impacts and related options for improving the chicken meat supply chain. In: 6th International Conference on LCA in the Agri-Food Sector. Zurique, 2008. KEEBLE, Brian R. The Brundtland report:‘Our common future’. Medicine and War, v. 4, n. 1, p. 17-25, 1988. KICHERER, Andreas et al. Eco-efficiency: Combining Life Cycle Assessment and Life Cycle Costs via Normalization. The International Journal of Life Cycle Assessment, v. 12, n. 7, p. 537-543, 2007. LEINONEN, Ilkka et al. Comparing the environmental impacts of alternative protein crops in poultry diets: The consequences of uncertainty. Agricultural systems, v. 121, p. 33-42, 2013. LEINONEN, Ilkka et al. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poultry Science, v. 91, n. 1, p. 8-25, 2012a.99 LEINONEN, Ilkka et al. The potential to reduce environmental impacts of poultry 2 production systems by including alternative protein crops in their 3 diet: a quantitative comparison with uncertainty analysis. Agricultural Systems, v. 121, n. October, p. 33–42, 2013. LEIP, Adrian et al. Evaluation of the livestock sector's contribution to the EU greenhouse gas emissions (GGELS). JOINT RESEARCH CENTRE (Administrative Arrangements AGRI-2008-0245 and AGRI-2009-0296, final report). Itália, 2010. LIMA, Nilsa Duarte Silva et al. Model-predicted ammonia emission from two broiler houses with different rearing systems. Scientia Agricola, v. 72, n. 5, p. 393–399, 2015. LOVATA, Linda M.; COSTIGAN, Michael L. Empirical analysis of adopters of economic value added. Management Accounting Research, v. 13, n. 2, p. 215-228, 2002. MACLEOD, M. et al. Greenhouse gas emissions from pig and chicken supply chains–A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Roma, 2013. MAPA. MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO. (Org.). Cadastro Nacional de Produtores Orgânicos. Brasil 2017. Disponível em: <http://www.agricultura.gov.br/assuntos/sustentabilidade/organicos/cadastro-nacionalprodutores-organicos>. Acesso em: 10 dez. 2017. MAPA. MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO. (Org.). Oficio Circular DOI /DIPOA N° 007/99, Registro do Produto "Frango Caipira ou Frango Colonial" ou "Frango Tipo ou Estilo Caipira" ou "Tipo ou Estilo Colonial". Brasil, 1999. Disponível em: < https://www.agencia.cnptia.embrapa.br/Repositorio/Oficio-circular-7-de-19- de-maio-de-1999_000gy48rvu302wx7ha0b6gs0xgpnhnya.pdf>. Acesso em: 10 mai. 2017. MARTÍNEZ-PÉREZ, M. et al. Poultry meat production in Free Range systems: perspectives for tropical areas. World's Poultry Science Journal, v. 73, n. 2, p. 309-320, 2017. MENDES, Natalia Crespo. Métodos e modelos de caracterização para a Avaliação de Impacto do Ciclo de Vida: análise e subsídios para aplicação no Brasil. 2013. 149 f. 2013. Tese de Doutorado. – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. MIELE, M. et al. Coeficientes técnicos para o cálculo do custo de produção de frango de corte. Embrapa Suínos e Aves-Comunicado Técnico 483 (INFOTECA-E), 2010. MOSNIER, E. et al. Evaluation of the environmental implications of the incorporation of feeduse amino acids in the manufacturing of pig and broiler feeds using Life Cycle Assessment. Animal, v. 5, n. 12, p. 1972–1983, 2011. MUELLER, Nathaniel D. et al. Closing yield gaps through nutrient and water management. Nature, v. 490, n. 7419, p. 254–257, 2012. NÄÄS, Irenilza et al. Brazilian chicken meat production chain:a 10-year overview. Brazilian Journal of Poultry Science, v. 17, n. 1, p. 87–94, 2015.100 NIELSEN, Nicolaj Ingemann; JØRGENSEN, Malene; BAHRNDORFF, Simon. Greenhouse gas emission from the Danish broiler production estimated via LCA methodology. The Danish Food Industry Agency, Aarhus, Dinamarca, 2011. NOWICKI, Rodrigo et al. Desempenho de frangos de corte criados em aviários convencionais e escuros. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, Umuarama, v. 14, n. 1, p. 25-28, 2011. OECD - Organisation for Economic Co-operation and Development, (Paris, France). EcoEfficiency, Oecd Publications, 1998. 88 p. Disponível em: <http://dx.doi.org/10.1787/9789264040304-en>. Acesso em: 26 jan. 2018. OECD - Organization for Economic Co-operation and Development, (Nova York, EUA). Glossary of Statistical Terms: ECO-EFFICIENCY PROFILES. 2005. Disponível em: <https://stats.oecd.org/glossary/detail.asp?ID=6405>. Acesso em: 25 jan. 2018. OECD/FAO. Oecd/food And Agriculture Organization Of The United Nations. Agricultural Outlook 2015-2024. Paris, 2015. ISBN 978-92-64-23203-7. Disponível em: <http://dx.doi.org/10.1787/agr_outlook-2015-en >. Acesso em: 02 jun. 2017. OECD/FAO. OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, Paris. 2016. Disponível em: <http://dx.doi.org/10.1787/agr_outlook-2016-en>. Acesso em: 3 de maio de 2017. PAOLOTTI, Luisa et al. Combining livestock and tree crops to improve sustainability in agriculture: a case study using the Life Cycle Assessment (LCA) approach. Journal of Cleaner Production, v. 131, p. 351-363, 2016. PATRICIO, I.S. et al. Overview on the Performance of Brazilian Broilers (1990 to 2009). Brazilian journal of poultry science, v. 14, n. 4, p. 233–238, 2012. PELLETIER, Nathan. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agricultural Systems, v. 98, n. 2, p. 67-73, 2008. PETERSON, Pamela P.; PETERSON, David R. Company performance and measures of value added. Research Foundation Books, 1-60, 1996. PRUDÊNCIO DA SILVA, Vamilson et al. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, v. 133, p. 222–231, 2014. ROGERS, Kara; KADNER, Robert J.. Growth of bacterial populations: Bacteria. 2018. Encyclopædia Britannica. Disponível em: <https://www.britannica.com/science/bacteria/Growth-of-bacterial-populations>. Acesso em: 08 jan. 2018. ROGERSON, William P. Intertemporal cost allocation and managerial investment incentives: A theory explaining the use of economic value added as a performance measure. Journal of Political Economy, v. 105, n. 4, p. 770-795, 1997.101 ROSTAGNO, Horacio Santiago et al. Tabelas Brasileiras Para Aves e Suínos. 4ª ed. Viçosa: UFV, 2017. SCHALTEGGER, Stefan; STURM, Andreas. Ökologische Rationalität. Nomos Verlagsgesellschaft/JSTOR, v. 44, n. 4, p. 273–290, 1990. Disponível em: <http://www.jstor.org/stable/24180467>. Acesso em: 28 de out. 2017. SCHAU, Erwin Meissner; FET, Annik Magerholm. LCA studies of food products as background for environmental product declarations. The International Journal of Life Cycle Assessment, v. 13, n. 3, p. 255-264, 2008. SECEX (SECRETARIA DE COMÉRCIO EXTERIOR), Ministério da Indústria, Comércio Exterior e Serviços. Disponível em: <http://www.mdic.gov.br/index.php/comercioexterior/estatisticas-de-comercio-exterior >. Acesso em: 9 de agosto de 2017. SHIL, Nikhil Chandra. Performance measures: An application of economic value added. International Journal of business and Management, v. 4, n. 3, p. 169, 2009. SILVA, Gil Anderi Da et al. Avaliação do Ciclo de Vida: Ontologia Terminológica. Instituto Brasileiro de Informação em Ciência e Tecnologia- Ibict, Brasília, 2014. ISBN: 978-85-7013- 103-4 1. SPIES, Airton. The sustainability of the pig and poultry industries in Santa Catarina, Brazil: a framework for change. Brisbane: University of Queensland, School of Natural and Rural Systems Management, Tese de Doutorado, p. 379 f, 2003. STEINFELD, Henning et al. Livestock’s long shadow - environmental issues and options. Food and Agriculture Organization of the United Nations, v. 3, n. 1, p. 1–377, 2006. Disponível em: <ftp://ftp.fao.org/docrep/fao/010/a0701e/a0701e.pdf>. Acesso em: 26 out. 2017. STERN VALUE MANAGEMENT (Nova York, EUA). CONSULTING SERVICES: Training. Disponível em: <http://sternvaluemanagement.com/consulting-services-strategygovernance-financial-policy-operations/eva-training/>. Acesso em: 11 jan. 2018. TILMAN, David et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, v. 108, n. 50, p. 20260-20264, 2011. TILMAN, David; CLARK, Michael. Global diets link environmental sustainability and human health. Nature, v. 515, n. 7528, p. 518-522, 2014. TRANFIELD, David; DENYER, David; SMART, Palminder. Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British journal of management, v. 14, n. 3, p. 207-222, 2003. UN (United Nations), Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. p. 46, 2017. VALDES, Constanza; HALLAHAN, Charlie; HARVEY, David et al. Brazil’s broiler industry: Increasing efficiency and trade. International Food and Agribusiness Management Review, v. 18, n. SpecialIssueA, p. 263–275, 2015.102 VAN DER WERF, Hayo MG; SALOU, Thibault. Economic value as a functional unit for environmental labelling of food and other consumer products. Journal of Cleaner Production, v. 94, p. 394-397, 2015. WBCSD (World Business Council for Sustainable Development). Eco-efficiency: Learning Module. File Winds International, 2005. ISBN: 2-940240-84-1. WEBB, J. et al. Can UK livestock production be configured to maintain production while meeting targets to reduce emissions of greenhouse gases and ammonia?. Journal of cleaner production, v. 83, p. 204-211, 2014. WERNET, G. et al. The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230, 2016. Disponível em: <http://link.springer.com/10.1007/s11367-016-1087-8> Acessado em 17/07/2017. WIDHEDEN, Anna; STRÖMBERG, Karin. LCA Kyckling. CIT Ekologik Ab. p. 1–62, Gotemburgo, Suécia, 2001. WIEDEMANN, S. G.; MCGAHAN, E. J.; MURPHY, C. M. Resource use and environmental impacts from Australian chicken meat production. Journal of Cleaner Production, v. 140, p. 675-684, 2016. WIEDEMANN, Stephen; MCGAHAN, Eugene J.; POAD, Glenn. Using life cycle assessment to quantify the environmental impact of chicken meat production. RIRDC, 2012. WIEDEMANN, Stephen; YAN, Mingjia. Livestock meat processing: inventory data and methods for handling co-production for major livestock species and meat products. In: The 9th international conference of LCA of food. 2014. p. 8-10. WILLIAMS, A. G. et al. A lifecycle approach to reducing the environmental impacts of poultry production. In: World Poultry Science Association (WPSA), 17th European Symposium on Poultry Nutrition, Edinburgo, Reino Unido, 23-27 August, 2009. World Poultry Science Association (WPSA), 2009. p. 70-76. WILLIAMS, A.; AUDSLEY, E.; SANDARS. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Final report to Defra on project IS0205, p. 97, Londres, 2006. WOLF et. al. European Commission - Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. First edition March 2010. EUR 24708 EN. Luxemburgo. Publications Office of the European Union; 2010. WU, Guoyao et al. Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Annals of the New York Academy of Sciences, v. 1321, n. 1, p. 1–19, 2014.

Page generated in 0.1357 seconds