Dans cette thèse nous étudions l’existence et la stabilité orbitale de solutions ayant une norme prescrite pour deux types d’équations Schrödinger non linéaires dans , à savoir, une classe de systèmes non linéaires couplés de Schrödinger dans et une classe d’équations non linéaires de Schrödinger du quatrième ordre dans . Ces deux types d’équations non linéaires de Schrödinger surviennent dans de nombreuses applications en mathématiques et physique, et sont devenus une grande attention dans les années récentes. D’un point de vue physique, de telles solutions sont souvent référées comme des solutions normalisées, qui sont obtenues comme points critiques d’énergie fonctionnelle associée sous contrainte avec une norme. Les éléments clés de nos preuves sont les méthodes variationnelles. / In this thesis, we are concerned with the existence and orbital stability of solutions having prescribed -norm for two types of nonlinear Schrödinger equations in , namely a class of coupled nonlinear Schrödinger systems in and a class of fourth-order nonlinear Schrödinger equations in . These two types of nonlinear Schrödinger equations arise in a variety of mathematical and physical models, and have drawn wide attention to research in recent years. From a physical point of view, such solutions are often referred as normalized solutions, which correspond to critical points of the underlying energy functional restricted to -norm constraint. The main ingredients of our proofs are variational methods.
Identifer | oai:union.ndltd.org:theses.fr/2017UBFCD077 |
Date | 29 September 2017 |
Creators | Gou, Tianxiang |
Contributors | Bourgogne Franche-Comté, Jeanjean, Louis |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds