Matavfall som kommer in till Eskilstuna Strängnäs Energi & Miljö (ESEM), har mestadels använts till biogasproduktion. Eftersom ESEMs rötningspanna är liten har inte allt matavfall gjorts om till biogas, utan gått till förbränning i Västerås istället. För att underöka eventuella utvecklingsmöjligheter och förbättringsmöjligheter har ESEM gått ihop med Sveriges Lantbruksuniversitet (SLU). Där undersökning av matning med matavfall till afrikanska fluglarver pågick. Ifall detta projekt är praktiskt genomfört på företaget ESEM skulle två nya produkter i form av protein och jord, kunna säljas utöver biogas. I denna studie har det undersökts ifall det är möjligt att kunna mata fluglarverna med matavfall. Det ställs krav på rätt temperatur och luftflöde för utrymmet. Därmed har fokus till detta examensarbete varit att optimera en ventilationsmodell för systemet. För att utföra detta projekt krävdes data från tidigare studier, forskning och experiment, vilket skrevs in i behandlingsprogrammet Excel. Där ett idealt ventilationsflöde med verkningsgraden 50 %, till varje enskild behandlingslåda med fluglarver i olika levnadsstadier, på 1,56 m3/h (en låda) togs fram med hjälp av tidigare studier. Fluglarverna är planerade att bli placerade i brödlådor med tillhörande ställningar i en container och varje låda ska både ha fluglarver och matavfall. Undersökningen för detta examensarbete var att bestämma hur ställningarna med behandlingslådor ska placeras i containern. Genom att välja den kombination av behandlingslådorna, som är mest optimerad och praktiskt genomförbar. Det utfördes en simulering i Excel som redovisade andelen värme och förångning som varje behandlingslåda med stadie 1, 6 och 12 genererade. Simuleringar genomfördes för olika kombinationer och beräknade värmeutvecklingen från vardera behandlingslåda och kombination. Vilket resulterade i att det fanns två möjliga placeringar av behandlingslådorna i ställningarna, i containern. Den första placeringen i containern var planerad med att ställning 1 skulle ha behandlingslådor med larvstadiet/dag 1. Ställning 2 respektive 3 skulle ha behandlingslådor med larvstadiet/dag 6 respektive larvstadiet/dag 12. Det vill säga kombination 1 – 6 – 12. Vilket betyder att alla ställningarna i den kombinationen är seriekopplade med varandra. Medan varje enskild behandlingslåda i en ställning är parallellkopplade. Då denna kombination redovisar att ställning 3 med behandlingslådor av larvstadiet/dag 12, har högst andel förångning och värmegenerering. Denna placering ansågs rimlig att ställa lägst in i containern, närmast frånluftutloppet på container. Både av praktiska skäl och att undvika värmespridning som kan medföra kondens. Den andra placeringen i containern var tänkt att ställning 1 skulle ha behandlingslådor med larvstadiet/dag 12. Ställning 2 respektive 3 skulle ha behandlingslådor med larvstadiet/dag 6 respektive larvstadiet/dag 1. Det vill säga kombination 12 – 6 – 1. Vilket betyder att alla ställningarna i den kombinationen är seriekopplade med varandra. Medan varje enskild behandlingslåda i en ställning är parallellkopplade. Denna kombination redovisar minst temperaturdifferens mellan ställningarna (mellan behandlingslådorna) och visade även möjligheten att utnyttja värmen i behandlingslådorna från tidigare lådor. Genom att luften som förs vidare från larvstadiet/dag 12 till larvstadiet/dag 6, värmer då upp avfallsaktiviteten. Studien resulterade i att det optimala luftflödet med verkningsgraden 50 %, var 1,56 m3/h. Energibalanserna utfördes i beräkningsmodellen med hänsyn till luftflödet in och ut ur en behandlingslåda. Avfallstemperaturen som bestämdes vara ideal vid 30°C i detta examensarbete är en betydelsefull parameter för resultatet. Resultatet optimerades med hänsyn till att en avfallstemperatur på 30°C skulle bibehållas genom beräkningarna. Den optimala kombinationen bestämdes vara kombination av de tre behandlingslådorna 1 – 6 – 12, där medeltemperaturen på avfallet var 30,22°C. Denna kombination diskuterades även vara den mest praktiskt hanterbara, i containern hos ESEM. Vid hänsyn till kondensering som tidigare examensarbeten diskuterat är kombination 12 – 6 – 1 ett alternativ. De sex kombinationerna resulterar inte i stora temperaturdifferenser som kan orsaka kondensering. Ifall hänsyn tas till kondensering är alternativet 12 – 6 – 1 bäst. Då avfallstemperaturen är stabil jämfört med de fem andra kombinationerna. Ett helt slutet system med tre seriekopplade ställningar som innehåller tre parallellkopplade behandlingslådor erhålls resultat från två fall. Sommarfallet med en temperatur på 20°C resulterade i högre avfallstemperaturen jämfört med vinterfallet på 10°C. Däremot är avfallstemperaturen under den maximala gränsen, det vill säga är avfallstemperaturen på en behaglig nivå för larvproduktionen. Resultaten erhållna från detta examensarbete redovisar att det är teoretiskt och praktiskt möjligt att utföra en nedbrytningsprocess med hjälp av larver. Matavfallet bryts ner och bidrar med en ny produkt, näringsrik jord, samtidigt som den underlättar för ESEM nedbrytningsprocess. / This work is written as a degree project for the Energy engineering program, specialized in heating technology, in Mälardalens University, Västerås. The aim with this degree project is to optimize a theoretical model in Excel to study larvae of Black Soldier Fly. The main calculations are made for three series connected boxes, with different combinations of stages of development. The calculations are thereafter made for three stands (that are in series) with each stand contain three boxes (that are parallel), each stand holding uniform growth of larvae. The calculations are made with equations based from the energy balance, for the air flow in and out. With the support from formerly made degree projects and their specific data, a calculation model was made in Excel. An airflow of 1,56 m3/h is achieved, with an efficiency of 50%. These results are based of previously performed degree projects, with the airflow 8,4 m3/h and efficiency of 9,3%. The maximum waste temperature is 30-36°C, thus, the desired temperature in this degree project was 30°C. The most optimized combination of one box of each stage, that are series connected, resulted to be 1 – 6 – 12. Day 1, day 6 and day 12 coupled. This combination is also used as the reference case in this degree project and calculations. However, the most stabile waste temperature resulted to be for the combination 12 – 6 – 1. The air temperature through the boxes remained with a mean temperature of 23,9°C, when the outside air temperature is set as 10°C (winter case, the reference case). The conclusion is that the best combination for Lilla Nyby, in Eskilstuna, is 1 – 6 – 12, with an airflow of 1,56 m3/h. A whole system, containing the three stands and respectively boxes, is applicable. The waste temperature is within the range for temperatures for optimized growth process for larvae, for both winter and summer cases (10°C and 20°C).
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-38222 |
Date | January 2018 |
Creators | Kubilay, Kevser, Kucska, Kelly |
Publisher | Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds