Made available in DSpace on 2016-08-17T14:52:36Z (GMT). No. of bitstreams: 1
dissertacao Bruno Rodrigues Froz.pdf: 1583465 bytes, checksum: f53ff1f85d91788fc7d52925b16f6794 (MD5)
Previous issue date: 2015-02-02 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The lung cancer is known for presenting the highest mortality rate and one of the lowest survival rate after diagnosis, which is mainly caused by the late detection and treatment. With the goal of assist the lung cancer specialists, computed aided diagnosis systems are developed to automate the detection and diagnosis of this disease. This work proposes a methodology to classify, with computed tomography images, lung nodules candidates and non-nodules candidates. The Lung Image Database Consortium (LIDC) image database is used to create an image database with nodules candidates and an image database with non-nodule candidates. Three techniques are utilized to extract texture measurements. The first one is the artificial life algorithm Artificial Crawlers. The second one is the use of Rose Diagram to extract directional measurements. The third and last one is an hybrid model to join the Artificial Crawlers and Rose Diagram texture measurements. In the classification, que Support Vector Machine classifier is used, with its radial basis kernel. The archived results are very promising. With 833 LIDC exams, divided in 60% for train and 40% for test, we reached na accuracy mean of 94,30%, sensitivity mean of 91,86%, specificity mean of 94,78%, variance coefficient of accuracy of 1,61% and ROC curves mean área of 0,922. / O câncer de pulmão é conhecido por apresentar a maior taxa de mortalidade e uma das menores taxas de sobrevida após o diagnóstico, o que é causado principalmente pela detecção e tratamento tardios. Para o auxílio dos especialistas em câncer pulmonar, são desenvolvidos sistemas de diagnósticos auxiliados por computador com o objetivo de automatizar a detecção e diagnóstico dessa doença. Este trabalho propõe uma metodologia para a classificação, através de imagens de tomografias computadorizadas, de candidatos a nódulos pulmonares e candidatos a não-nódulos. O banco de imagens Lung Image Database Consortium (LIDC) é utilizado para a criação de uma base de imagens de candidatos a nódulos e uma base de imagens de candidatos a não-nódulos. Três técnicas são utilizadas para a extração de medidas de textura. A primeira delas é o algoritmo de vidas artificiais Artificial Crawlers. A segunda técnica é a utilização do Rose Diagram para a extração de medidas direcionais. A terceira e última técnica é um modelo híbrido que une as medidas do Artificial Crawlers e do Rose Diagram. Para a classificação é utilizado o classificador Máquina de Vetor de Suporte (MVS), com o kernel de base radial. Os resultados alcançados são muito promissores. Utilizando 833 exames do LIDC divididos em 60% para treino e 40% para teste, alcançou-se uma média de acurácia de 94,30%, média de sensibilidade de 91,86%, média de especificidade de 94,78%, coeficiente de variância da acurácia de 1,61% e área média das curvas ROC de 0,922.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2:tede/285 |
Date | 02 February 2015 |
Creators | Froz, Bruno Rodrigues |
Contributors | Silva, Aristófanes Corrêa, Paiva, Anselmo Cardoso, Fonseca Neto, João Viana da |
Publisher | Universidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, BR, Engenharia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds