Return to search

Top-down Verarbeitung und neuronale Synchronisation

Wahrnehmung ist kein vollständig durch sensorische Reize determinierter bottom-up Prozeß, sondern wird stark beeinflußt durch von diesen Reizen unabhängige top-down Prozesse wie etwa Aufmerksamkeit oder Erwartungen. Welche neuronalen Mechanismen liegen der Integration von bottom-up und top-down gerichteter Verarbeitung sensorischer Information zu Grunde? Im ersten Teil dieser Arbeit wurde diese Frage an Hand von Simulationen eines neuronales Netzwerks zweier vereinfachter kortikaler Areale untersucht. Dieses Netzwerk berücksichtigt hierbei jüngste zellphysiologische Befunde über die stark asymmetrischen funktionellen Eigenschaften kortikaler Neurone. Das simulierte Netzwerk repliziert zentrale neurophysiologische Befunde: 1) Top-down Signale erhöhen die Feuerraten der Neurone sowohl in einem hierarchisch hohen als auch tiefen kortikalen Areal. 2) Durch selektive top-down Signale wird die Verarbeitung simultaner Reize zu Gunsten eines faszilitierten Reizes moduliert. 3) Durch die reziproke Netzwerkarchitektur kommt es zu einem bidirektionalen Informationsfluß zwischen Arealen. Diese kooperative Verarbeitung bedingt gemeinsam mit einer nichtlinearen somato-dendritischen Interaktion neuronale Salvenentladungen, die ein hohes Signal-Rausch-Verhältnis aufweisen. Das simulierte Netzwerk demonstriert, welche zentrale Rolle die komplexen nichtlinearen Eigenschaften kortikaler Neurone bei der Integration bottom-up und top-down gerichteter Verarbeitung sensorischer Information spielen. Im Mittelpunkt der im zweiten Abschnitt vorgestellten experimentellen Studie steht die hochfrequente Synchronisation neuronaler Aktivität. Das große neurowissenschaftliche Interesse an der zeitlichen Struktur neuronaler Aktivität liegt insbesondere in der kontrovers diskutierten Hypothese eines „Synchronisationscodes“ begründet, gemäß welcher Information nicht nur durch die Feuerraten kortikaler Neurone, sondern auch durch die Synchronisation der Aktionspotentiale einer Neuronenpopulation codiert wird. Finden sich solche Synchronisationsphänomene in wachen, sich unter möglichst natürlichen Bedingungen verhaltenden Tieren wieder? Sind diese Synchronisationen selektiv für Eigenschaften des Reizes? Gelingt es, an Hand eines objektiven Kriteriums ein funktionelles Frequenzband neuronaler Synchronisation zu definieren? Diese Fragestellungen wurden mittels chronischer extrazellulärer Ableitungen im primären visuellen Kortex wacher, sich verhaltender Katzen untersucht: 1) Visuelle Stimulation induziert einen breitbandigen hochfrequenten Anstieg neuronaler Synchronisation. 2) Diese Synchronisation ist selektiv für die Orientierung visueller Reize. 3) Durch Analyse dieser Stimulusselektivität kann ein funktionelles Band neuronaler Synchronisation von etwa 45 Hz bis 120 Hz definiert werden. Diese Untersuchungen an wachen, sich unter vergleichsweise natürlichen Bedingungen verhaltenden Tieren demonstrieren eine überraschend breite Frequenzverteilung neuronaler Synchronisation, die im hochfrequenten Bereich weit über die üblicherweise untersuchten Frequenzbänder hinausreicht. Diese Befunde sprechen gegen die Hypothese hochfrequenter kortikaler Synchronisation als einem schmalbandigen statischen Phänomen. / Sensory perception is not purely a bottom-up process determined only by sensory stimuli, but is strongly dependent on top-down factors such as attention or expectations.Which neuronal mechanisms underlie the integration of bottom-up and top-down directed processing of sensory information? In the first part of this study this question was addressed by numerical simulations of a neural network model of two simplified cortical areas. The simulated network takes into account recent findings concerning the pronounced functional asymmetry of cortical neurons.The network replicates several important neurophysiological findings: 1) Top-down signals enhance firing rates in hierarchically high and low cortical areas. 2) The processing of two competing stimuli is biased towards one stimulus by selective top-down signals. 3) The reciprocal network architecture results in a bidirectional flow of information. Together with the implemented non-linear somato-dendritic interaction this leads to neuronal bursting behaviour with a high signal to noise ratio. The simulated network demonstrates the critical role of the complex non-linear properties of cortical neurons for the integration of bottom-up and top-down directed sensory processing. The central question of the second part of this study is the functional role of high-frequency synchronization of neuronal activity. The strong interest in the temporal dynamics of neuronal activity is particularly due to the hypothesis of a “synchronization-code” according to which information is not solely encoded by firing rates but also by the synchronization of neuronal ensembles. Is such synchronization observed in awake animals behaving under natural conditions? Are these synchronizations stimulus selective? Is it possible to define a functional frequency band of synchronization based on an objective criterion? These questions were addressed by chronic extracellular recordings of neuronal activity in primary visual cortex of awake behaving cats: 1) Visual stimulation induces neuronal synchronization in a broad and high frequency range. 2) This synchronization is selective for the orientation of a visual stimulus. 3) By analyzing the stimulus selectivity of synchronization a functional band of neuronal synchronization can be defined from about 45 to 120 Hz. These results from animals behaving under natural conditions show a surprisingly broad spectral distribution of synchronization that extends well beyond typically investigated frequency ranges. These results cast doubt on the hypothesis of cortical high-frequency synchronizations as a spectrally sharp and static phenomenon.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/15877
Date24 March 2005
CreatorsSiegel, Markus
ContributorsEngel, Andreas K., Herrmann, Christoph, Heinemann, Uwe
PublisherHumboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité
Source SetsHumboldt University of Berlin
LanguageGerman
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf, application/octet-stream, application/octet-stream

Page generated in 0.0037 seconds