Return to search

Magmatic volatile contents and explosive cinder cone eruptions in the High Cascades: Recent volcanism in Central Oregon and Northern California / Recent volcanism in Central Oregon and Northern California

xvi, 182 p. : col. ill. / Volatile components (H 2 O, CO 2 , S, Cl) dissolved in magmas influence all aspects of volcanic activity from magma formation to eruption explosivity. Understanding the behavior of volatiles is critical for both mitigating volcanic hazards and attaining a deeper understanding of large-scale geodynamic processes. This work relates the dissolved volatile contents in olivine-hosted melt inclusions from young volcanics in the Central Oregon and Northern California Cascades to inferred magmatic processes at depth and subsequent eruptive activity at the surface.

Cinder cone eruptions are the dominant form of Holocene volcanism in the Central Oregon segment of the High Cascades. Detailed field study of deposits from three cinder cones in Central Oregon reveals physical and compositional similarities to explosive historic eruptions characterized as violent strombolian. This work has important implications for future hazard assessments in the region. Based on melt inclusion data, pre-eruptive volatile contents for seven calc-alkaline cinder cones vary from 1.7-3.6 wt.% H 2 O, 1200-2100 ppm S, and 500-1200 ppm Cl. Subarc mantle temperatures inferred from H 2 O and trace elements are similar to or slightly warmer than temperatures in other arcs, consistent with a young and hot incoming plate.

High-magnesium andesites (HMA) are relatively rare but potentially important in the formation of continental crust. Melt inclusions from a well-studied example of HMA from near Mt. Shasta, CA were examined because petrographic evidence for magma mixing has stimulated a recent debate over the origin of HMA magmas. High volatile contents (3.5-5.6 wt.% H 2 O, 830-2900 ppm S, 1590-2580 ppm Cl), primitive host crystals, and compositional similarities with experiments suggest that these inclusions represent mantle-derived magmas.

The Cascades arc is the global end member, warm-slab subduction zone. Primitive magma compositions from the Cascades are compared to data for arcs spanning the global range in slab thermal state to examine systematic differences in slab-derived components added to the mantle wedge. H 2 O/Ce, Cl/Nb, and Ba/La ratios negatively correlate with inferred slab surface temperatures predicted by geodynamic models. Slab components become increasingly solute-rich as slab surface temperatures increase from ∼550 to 950°C at 120 km depth.

This dissertation includes previously published and unpublished co-authored material. / Committee in charge: Dr. Paul J. Wallace, Chair and Advisor;
Dr. Katharine Cashman, Member;
Dr. Ilya Bindeman, Member;
Dr. Richard Taylor, Outside Member

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/11262
Date03 1900
CreatorsRuscitto, Daniel M., 1981-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationUniversity of Oregon theses, Dept. of Geological Sciences, Ph. D., 2011;

Page generated in 0.0016 seconds