Return to search

Three-dimensional numerical simulation of encapsulation in polymer coextrusion / Simulation numérique 3D de la coextrusion des fluides polymériques et de l'effet d'enrobage

L'ensemble des travaux présentés dans cette thèse porte sur la simulation numérique des procédés de coextrusion par un modèle d'écoulement stratifié basé sur la méthode du champ de phase. L'avantage technologique offert par la coextrusion réside dans la possibilité de combiner des matériaux ayant des propriétés physiques très spécifiques dans un produit unique. Toutefois, les différences rhéologiques entre les divers matériaux sont elles-mêmes responsables d'un phénomène de distorsion de l'interface séparant deux couches adjacents. Les données expérimentales en coextrusion bicouches montrent que, en raison des différences de viscosité et d'élasticité entre le deux composants, le fluide le moins visqueux encapsule le fluide plus visqueux et le passage d'une configuration stratifiée à une encapsulée comporte une perte de qualité du produit final. Ce phénomène, dit d'enrobage représente donc un sujet de très grande actualité dans la recherche industrielle et la compréhension des mécanismes le générant sera utile pour l'amélioration des procédés de mise en forme des polymères. La nature intrinsèquement tridimensionnelle de l'enrobage a requis le développement d'un code pour la simulation tridimensionnelle basée sur la méthode des volumes finis pour la discrétisation des équations de Navier-Stokes pour les écoulement incompressibles et isothermes couplées avec une loi constitutive différentielle non linéaire (modèles de Giesekus ou PTT). La présence de deux fluides est prise en compte par une équation scalaire supplémentaire décrivant l'évolution de l'interface sur un maillage fixe. Cette équation offre une interprétation physique précise car elle est dérivée de la thermodynamique de séparation de phase d'un fluide binaire. Le modèle proposé est validé par confrontation avec les résultats expérimentaux et numériques disponibles dans la littérature. Une étude numérique de la coextrusion en filière rectangulaire est effectuée afin de mettre en évidence les facteurs influençant l'enrobage et la nature de son origine / The objective of the present work is the analysis of coextrusion processes by numerical simulation based on phase-field modeling of stratified confined flows. The study of such flows is motivated by the presence of complex phenomena appearing in a vast range of industrial operational coextrusion conditions due to the differences in the components properties and their viscoelastic behavior. The basic idea in coextrusion is to combine several layers of different polymers in a common die, to form a unique product with enhanced properties. However, the existence of fluid stratification in the die is responsible of a severe distortion of the interface between the fluid components, causing a loss of efficiency for the whole process. Experimental data show that, even if a stratified initial configuration is imposed at the die entry, one fluid eventually encapsulates the other in most of the flow condition analyzed. The intrinsically three-dimensional nature of this phenomenon has required the development of a three-dimensional flow solver based on the finite volume discretization of the Navier-Stokes equations for incompressible and isothermal flow, together with differential nonlinear constitutive equations (Giesekus, PTT models). The presence of two fluid phases is taken into account by a phase field model that implies the solution of an additional scalar equation to describe the evolution of the interface on a fixed Eulerian grid. This model, unlike others of the same family, has a thermodynamic derivation and can be physically interpreted. The proposed method is tested against experimental data and solutions already available in literature and a study of coextrusion in rectangular dies is performed to identify the dependence of encapsulation on the flow parameters

Identiferoai:union.ndltd.org:theses.fr/2012STET4020
Date29 November 2012
CreatorsBorzacchiello, Domenico
ContributorsSaint-Etienne, Leriche, Emmanuel, Blottière, Benoît
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds