We have pioneered a novel approach to the synthesis of high-quality and highly uniform few-layer graphene on silicon wafers, based on solid source growth from epitaxial 3C-SiC films [1,2]. The achievement of transfer-free bilayer graphene directly on silicon wafers, with high adhesion, at temperatures compatible with conventional semiconductor processing, and showing record- low sheet resistances, makes this approach an ideal route for metal replacement method for nanodevices with ultimate scalability fabricated at the wafer –level.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-207052 |
Date | 22 July 2016 |
Creators | Iacopi, Francesca, Mishra, N., Cunning, B.V., Kermany, A.R., Goding, D., Pradeepkumar, A., Dimitrijev, S., Boeckl, J.J., Brock, R., Dauskardt, R.H. |
Contributors | TU Chemnitz, Fakultät für Elektrotechnik und Informationstechnik |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject |
Format | application/pdf, text/plain, application/zip |
Source | AMC 2015 – Advanced Metallization Conference |
Page generated in 0.0064 seconds