Return to search

Effets de la température et de l'irradiation sur la mobilité du xénon dans UO$_2$ : étude profilométrique et microstructurale

En France, l'énergie électrique est majoritairement produite (78 %) grâce au fonctionnement de 58 REP (Réacteurs à Eau Pressurisée). Lors du fonctionnement de ces réacteurs, de nombreux produits de fission (PF) sont générés dans le combustible qui est de l'UO2 enrichi à environ 4% en 235U. Parmi eux, il est important de connaître le comportement du xénon et du krypton, produits de fission gazeux qui sont abondamment produits (près de 15 % des produits de fission stables). De plus, de par leur nature chimique, ces deux gaz ont une très faible solubilité dans le combustible et vont donc avoir tendance à se regrouper sous forme de bulles (pour minimiser la tension de surface) pouvant ainsi engendrer un gonflement de la pastille d'UO2. Le gaz formé peut aussi être libéré hors de la pastille, entrainer une augmentation substantielle de la pression dans la gaine de combustible et ainsi limiter l'utilisation du combustible. Cependant, les mécanismes de migration, traditionnellement étudiés de manière indirecte en mesurant la quantité de gaz relâché après irradiation, ne sont pas encore totalement compris. Il est fréquemment supposé que la diffusion atomique est le seul mécanisme susceptible d'entrainer une migration du xénon. L'objectif de cette thèse est de mettre en évidence de manière directe les différents mécanismes gouvernant le comportement thermique et sous irradiation du xénon dans UO2. Pour cela, nous avons utilisé l'implantation ionique qui nous permet d'introduire du xénon dans des échantillons de dioxyde d'uranium. Cette implantation engendre un profil de concentration quasi-gaussien de xénon (variation de la concentration en fonction de la profondeur) dans les 300 premiers nanomètres de l'échantillon. Suite à différents traitements qui sont d'une part des recuits entre 1400°C et 1600°C afin d'étudier l'impact de la température et d'autre part des irradiations avec des ions afin de simuler l'impact des produits de fission dans le combustible, les profils de concentration ont été mesurés par microsonde ionique (SIMS). Bien que la faisabilité de la mesure du xénon ait été démontrée dans différents articles, aucun profil de concentration n'avait jusqu'à présent été présenté dans la littérature. Dans le dioxyde d'uranium, un traitement classique des données SIMS n'est pas adapté. Un nouveau logiciel de traitements des données a donc été développé au cours de cette thèse qui permet l'obtention de profils reproductibles. Aucune diffusion du xénon n'a pu être observée lors des recuits à 1400°C et à 1600°C indiquant une absence de mobilité du xénon dans ces conditions. Des études complémentaires de caractérisation de défauts de type lacunaire et de bulles de xénon ont été effectuées par spectroscopie d'annihilation de positrons (PAS) et par microscopie électronique par transmission (MET). Elles montrent des modifications importantes de la microstructure d'UO2 induites par la formation de bulles à 1400°C et 1600°C pouvant expliquer l'absence de diffusion observée. Les études sous irradiation à fort (dE/dx) électronique ont montré une diffusion et un transport du xénon dépendants des températures d'irradiation. Pour les irradiations à 600 et 1000°C, les caractérisations de la microstructure, mettent en évidence la formation de bulles de xénon alignées avec la direction du faisceau d'ions incidents. A contrario, les chocs balistiques (irradiation avec des ions Argon de 800keV) n'ont causé aucune modification significative des profils quelle que soit la température d'irradiation.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00830100
Date21 December 2012
CreatorsMarchand, Benoît
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds