Groupes de Thompson projectifs de genre 0

Le groupe de Thompson projectif $T$ est l'ensemble des homéomorphismes du bord du disque hyperbolique qui sont $PSL_2((\bf Z))$ par morceaux avec points de rupture rationnels. Pour un sous-groupe $\Gamma$ de $PSL_2((\bf Z))$ on peut construire le sous-groupe $T_(\Gamma)$ de $T$ des homéomorphismes $\Gamma$ par morceaux, et on se demande si la propriété fondamentale de $T$ d'être de type fini est conservée. Cette étude dépend du genre de la surface associée à $\Gamma$. Le but principal de notre travail est de prouver qu'en genre nul, $T_(\Gamma)$ est de présentation finie (Peter Greenberg a montré qu'en genre strictement positif $T_(\Gamma)$ n'est pas de type fini). Nous commençons par conjuguer $T_(\Gamma)$ à un groupe d'homéomorphismes affines par morceaux dont nous prouvons, à l'aide de groupes de Thompson classiques, qu'il est de type fini. Puis nous donnons une description combinatoire de $T_(\Gamma)$ par des couples de forêts infinies, description qui nous permet de déterminer une présentation infinie régulière du groupe, puis une présentation finie.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007108
Date01 July 2004
CreatorsLAGET, Guillaume
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds