Estimation non-paramétrique de données censurées dans un cadre multi-états

Cette thèse porte sur le modèle des risques concurrents et sur le modèle des évènements <br />récurrents.<br />Dans le cadre des risques concurrents, on s'intéresse aux fonctions <br />d'incidences cumulées : elles correspondent à la probabilité qu'un évènement d'un certain type se <br />produise avant un instant donné. Ces fonctions sont estimées de façon non-paramétrique au moyen <br />de l'estimateur de Aalen-Johansen. Des résultats d'approximation forte, de loi du logarithme <br />itéré et de convergence faible pour des processus basés sur l'estimateur de Aalen-Johansen sont <br />établis. Des bandes de confiance sont construites et simulées. Une extension du modèle de <br />Koziol-Green est aussi considérée.<br />Dans le cadre d'évènements récurrents, des fonctions d'incidences cumulées conditionnelles sont <br />estimées de façon non-paramétrique. Les estimateurs proposés sont consistants et leur <br />comportement à distance finie est illustré sur des données réelles et simulées.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00138280
Date03 November 2006
CreatorsGeffray, Ségolen
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds