Return to search

Spectroscopie de Fourier par peignes de fréquences femtosecondes

Ces travaux rapportent le développement expérimental de deux méthodes de spectroscopie optique par transformation de Fourier basées sur les peignes de fréquences. La spectroscopie de Fourier s'est imposée, dès 1970, comme outil multiplex de mesure de spectres résolus et exacts, couvrant de larges plages spectrales. Elle ne répond néanmoins plus aux enjeux modernes de la physique moléculaire, qui requièrent des instruments rapides, résolus, exacts, multiplex et sensibles. Les peignes de fréquences femtosecondes, qui ont révolutionné la métrologie des fréquences optiques au début des années 2000, sont des sources lasers à impulsions ultra-courtes, équivalentes à un million de lasers continus, émettant en phase à des fréquences équidistantes. Ils motivent de nouvelles approches à la spectroscopie d'absorption et de dispersion. La première méthode développée associe le peigne de fréquences au spectromètre de Fourier basé sur l'interféromètre de Michelson. Sans modification structurelle de ce dernier, en un unique enregistrement, la totalité du domaine d'émission du peigne est analysée à haute résolution avec des temps d'acquisition améliorés de deux ordres de grandeur par rapport aux sources incohérentes. La seconde approche aboutit à une nouvelle génération de spectromètres de Fourier, basée sur la mesure du battement de deux peignes de fréquences cohérents, conduisant à une spectroscopie à large bande spectrale, qui améliore d'un million la limite de résolution, le temps de mesure et l'exactitude de l'échelle de fréquences de la spectroscopie de Fourier traditionnelle et ne fait plus usage de l'interféromètre de Michelson jusqu'à présent élément clef du spectromètre.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00519027
Date08 December 2009
CreatorsMandon, Julien
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0378 seconds