Les conducteurs composites sont constitués d'hétérogénéités microscopiques mais apparaissent comme homogènes à l'échelle macroscopique. La description de leur comportement nécessite l'homogénéisation des équations de conduction régissant chacune de leurs phases. Cette thèse s'intéresse à certaines lois effectives pour les conducteurs composites en présence d'un champ magnétique constant. Dans le premier chapitre, on rappelle quelques résultats d'électrophysique (effet Hall, magnétorésistance) et de la théorie de l'homogénéisation (H-convergence) ainsi que son extension à des problèmes à forte conductivité. Dans le chapitre deux, on étudie l'effet Hall dans des composites bidimensionnels à deux phases très contrastées et on compare le résultat d'homogénéisation à celui obtenu avec une structure fibrée renforcée. Le troisième chapitre généralise ce cas particulier et étend la loi comportementale obtenue à des matériaux cylindriques non périodiques sans hypothèse géométrique sur leur section. Les chapitres deux et trois soulignent des différences importantes entre la dimension deux et la dimension trois au niveau des problèmes de conduction à fort contraste. Un quatrième chapitre est consacré à l'étude de la magnétorésistance en dimension trois et met en avant une forte interaction entre la direction du champ magnétique et l'énergie dissipée dans le matériau complétant ainsi un résultat antérieur en dimension deux.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00835958 |
Date | 18 June 2013 |
Creators | Pater, Laurent |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds