Return to search

Hydrodynamics of flagellar swimming and synchronization

What is flagellar swimming? Cilia and flagella are whip-like cell appendages that can exhibit regular bending waves. This active process emerges from the non-equilibrium dynamics of molecular motors distributed along the length of cilia and flagella. Eukaryotic cells can possess many cilia and flagella that beat in a coordinated fashion, thus transporting fluids, as in mammalian airways or the ventricular system inside the brain. Many unicellular organisms posses just one or two flagella, rendering them microswimmers that are propelled through fluids by the flagellar beat including sperm cells and the biflagellate green alga Chlamydomonas.

Objectives. In this thesis in theoretical biological physics, we seek to understand the nonlinear dynamics of flagellar swimming and synchronization. We investigate the flow fields induced by beating flagella and how in turn external hydrodynamic flows change speed and shape of the flagellar beat. This flagellar load-response is a prerequisite for flagellar synchronization. We want to find the physical principals underlying stable synchronization of the two flagella of Chlamydomonas cells.

Results. First, we employed realistic hydrodynamic simulations of flagellar swimming based on experimentally measured beat patterns. For this, we developed analysis tools to extract flagellar shapes from high-speed videoscopy data. Flow-signatures of flagellated swimmers are analysed and their effect on a neighboring swimmer is compared to the effect of active noise of the flagellar beat. We were able to estimate a chemomechanical energy efficiency of the flagellar beat and determine its waveform compliance by comparing findings from experiments, in which a clamped Chlamydomonas is exposed to external flow, to predictions from an effective theory that we designed. These mechanical properties have interesting consequences for the synchronization dynamics of Chlamydomonas, which are revealed by computer simulations. We propose that direct elastic coupling between the two flagella of Chlamydomonas, as suggested by recent experiments, in combination with waveform compliance is crucial to facilitate in-phase synchronization of the two flagella of Chlamydomonas.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-231897
Date15 January 2018
CreatorsKlindt, Gary
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Dr. Benjamin Friedrich, Prof. Dr. Stephan Grill, Prof. Dr. Frank Jülicher, Prof. Dr. Christian Wagner
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0022 seconds