• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • Tagged with
  • 13
  • 10
  • 9
  • 7
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanische Spektroskopie an PMMA-Systemen: Nichtlineares Verhalten und UV-aktive Blockcopolymere / Mechanical spectroscopy of PMMA-systems: Nonlinear behavior and UV-active blockcopolymers

Finkhäuser, Stefanie 07 December 2016 (has links)
No description available.
2

Über Synchronisationsphänomene nichtlinearer akustischer Oszillatoren / About synchronization phenomena of nonlinear acoustic oscillators

Fischer, Jost January 2012 (has links)
In dieser Arbeit werden die Effekte der Synchronisation nichtlinearer, akustischer Oszillatoren am Beispiel zweier Orgelpfeifen untersucht. Aus vorhandenen, experimentellen Messdaten werden die typischen Merkmale der Synchronisation extrahiert und dargestellt. Es folgt eine detaillierte Analyse der Übergangsbereiche in das Synchronisationsplateau, der Phänomene während der Synchronisation, als auch das Austreten aus der Synchronisationsregion beider Orgelpfeifen, bei verschiedenen Kopplungsstärken. Die experimentellen Befunde werfen Fragestellungen nach der Kopplungsfunktion auf. Dazu wird die Tonentstehung in einer Orgelpfeife untersucht. Mit Hilfe von numerischen Simulationen der Tonentstehung wird der Frage nachgegangen, welche fluiddynamischen und aero-akustischen Ursachen die Tonentstehung in der Orgelpfeife hat und inwiefern sich die Mechanismen auf das Modell eines selbsterregten akustischen Oszillators abbilden lässt. Mit der Methode des Coarse Graining wird ein Modellansatz formuliert. / In this study, synchronization properties observed in a system of nonlinear acoustic oscillators in form of two coupled organ pipes are investigated. From given measurements we extract the effects of synchronization one would expect typically. Furthermore we set our focus to the domains of transition into the synchronization region, when the system is complete synchronized and when it tears off, under the condition of different coupling strengths. We analyze and discuss the observed phenomena concerning their nonlinearities. Using numerical, fluid-dynamic and aeroacoustic simulation techniques we investigate how an organ pipe can be understand as a self-sustained, acoustic oscillator. With the results of the numerical simulations we show, how to reduce the complex fluid-dynamical interplay with the acoustic field inside the pipe to a self-sustained acoustic oscillator. For this process we use the coarse graining method.
3

Modellierung und Entwurf von resonanten Mikroaktoren mit elektrostatischem Antrieb / Modelling and design of resonant microactuators with electrostatic drive

Klose, Thomas 15 April 2016 (has links) (PDF)
Resonante Mikrobauelemente mit elektrostatischem Antrieb finden seit einigen Jahren vermehrt Anwendung in vielen Bereichen der Technik. So beruhen beispielsweise Drehraten- oder Beschleunigungssensoren, die im Automobilbau eingesetzt werden auf diesem Prinzip. Neue Anwendungsfelder ergeben sich vor allem für Aktoren, beispielsweise für die am Fraunhofer IPMS entwickelten Mikroscannerspiegel mit Out-of-plane-comb-Antrieb. Sie dienen zur geometrischen Ablenkung von Licht und können zur Realisierung von hochintegrierten Systemen zur Ausgabe (Laser-Projektor) oder Aufnahme (Laser-Imager) von Daten genutzt werden. Zum Entwurf von Mikroaktoren gibt es eine Reihe von Arbeiten, die sich meist auf ein konkretes Antriebsprinzip beziehen oder den Entwurf im Allgemeinen behandeln. Die vorliegende Arbeit verfolgt daher das Ziel, speziell die Randbedingungen beim Entwurf resonanter Mikroaktoren mit Out-of-plane-comb-Antrieb zu identifizieren bzw. zu systematisieren sowie die gewonnenen Erkenntnisse in einem effizienten Entwurfsprozess umzusetzen. Dabei sollen möglichst auch relevante nichtlineare Effekte berücksichtigt werden, sodass sich neue Möglichkeiten zur Optimierung der Bauelemente und damit zur Erweiterung des Entwurfsraums ergeben. / Electrostatically driven microsystems are utilized in technical systems for several years. For instance, they are used in automotive applications as acceleration sensors or angular rate sensors. New fields of applications appear especially for actuators. The scanning micromirror of the Fraunhofer Institute for Photonic Microsystems is such an actuator. It is a micro-­optical-­electrical microsystem (MOEMS) which is driven resonantly by an electrostatic comb drive and can be used in scanning laser imaging systems or laser projectors. Several technical and scientific publications occupy with the design and the simulation of microactuators, which refer usually to a concrete drive principle or to the issues of design in general. The intention of this thesis is to identify and systematize particularly the boundary conditions of design regarding to resonant micro actuators with out-­of-­plane­comb drive. The findings are implemented in efficient design tools and design processes. One emphasis thereby is the investigation of nonlinear properties and effects. This includes geometrically non-­linearities of suspensions as well as non-linearities caused by fluid damping and the electrostatic comb drive. The findings are utilized in an analytical, nonlinear stability analysis of the device's equation of motion as well as in an object oriented software library for the MATLAB environment, which can be used to create nonlinear reduced order models of scanning micromirrors. With the developed techniques for design and optimization the available parameter range of scanning micromirrors can be extended. By that means, it is possible to improve the properties of existing devices as well as create new devices with outreaching performance.
4

Lineare und nichtlineare optische Untersuchungen am synthetischen Eumelanin und Entwicklung eines Kaskadenmodells / Linear and nonlinear optical examinations of synthetical eumelanin and development of a cascade model

Seewald, Gunter January 2011 (has links)
Eumelanin ist ein Fluorophor mit teilweise recht ungewöhnlichen spektralen Eigenschaften. Unter anderem konnten in früheren Veröffentlichungen Unterschiede zwischen dem 1- und 2-photonen-angeregtem Fluoreszenzspektrum beobachtet werden, weshalb im nichtlinearen Anregungsfall ein schrittweiser Anregungsprozess vermutet wurde. Um diese und weitere optische Eigenschaften des Eumelanins besser zu verstehen, wurden in der vorliegenden Arbeit vielfältige messmethodische Ansätze der linearen und nichtlinearen Optik an synthetischem Eumelanin in 0,1M NaOH verfolgt. Aus den Ergebnissen wurde ein Modell abgeleitet, welches die beobachteten photonischen Eigenschaften konsistent beschreibt. In diesem kaskadierten Zustandsmodell (Kaskaden-Modell) wird die aufgenommene Photonenenergie schrittweise von Anregungszuständen hoher Übergangsenergien zu Anregungszuständen niedrigerer Übergangsenergien transferiert. Messungen der transienten Absorption ergaben dominante Anteile mit kurzen Lebensdauern im ps-Bereich und ließen damit auf eine hohe Relaxationsgeschwindigkeit entlang der Kaskade schließen. Durch Untersuchung der nichtlinear angeregten Fluoreszenz von verschieden großen Eumelanin-Aggregaten konnte gezeigt werden, dass Unterschiede zwischen dem linear und nichtlinear angeregten Fluoreszenzspektrum nicht nur durch einen schrittweisen Anregungsprozess bei nichtlinearer Anregung sondern auch durch Unterschiede in den Verhältnissen der Quantenausbeuten zwischen kleinen und großen Aggregaten beim Wechsel von linearer zu nichtlinearer Anregung begründet sein können. Durch Bestimmung des Anregungswirkungsquerschnitts und der Anregungspulsdauer-Abhängigkeit der nichtlinear angeregten Fluoreszenz von Eumelanin konnte jedoch ein schrittweiser 2-Photonen-Anregungsprozess über einen Zwischenzustand mit Lebendsdauern im ps-Bereich nachgewiesen werden. / Eumelanin is a fluorophor with some special spectral properties. In earlier publications for instance a difference between 1- and 2-photons-excited fluorescence (OPEF and TPEF) was observed. Therefore in the nonlinear case a stepwise excitation process was supposed. In this thesis extensive linear and nonlinear optical examinations of synthetical Eumelanin / 0,1M NaOH were done in order to reach a better understanding of this and further optical properties. A theoretical model could be formulated that describes the measured fluorescence behaviour consistently. In this so called cascade model the photonic energy of the excited molecule relaxes by a stepwise energy transfer between a multitude of electronic states with continuously decreasing energy. Examination of the nonlinear excited fluorescence of different aggregate sizes showed, that differences between the spectra of linear and nonlinear excited fluorescence can not only be explained by an stepwise excitation process by nonlinear excitation but also by the difference in the relation of quantum yields between smaller and bigger aggregates by the change from linear to nonlinear excitation. In spite of this a stepwise 2-photons-excitation-process via an intermediate state with a lifetime in the picosecond-range had also been proved by determinations of the excitation cross section and the TPEF-intensity dependency on the pulse duration.
5

Modellierung und Entwurf von resonanten Mikroaktoren mit elektrostatischem Antrieb

Klose, Thomas 23 February 2016 (has links)
Resonante Mikrobauelemente mit elektrostatischem Antrieb finden seit einigen Jahren vermehrt Anwendung in vielen Bereichen der Technik. So beruhen beispielsweise Drehraten- oder Beschleunigungssensoren, die im Automobilbau eingesetzt werden auf diesem Prinzip. Neue Anwendungsfelder ergeben sich vor allem für Aktoren, beispielsweise für die am Fraunhofer IPMS entwickelten Mikroscannerspiegel mit Out-of-plane-comb-Antrieb. Sie dienen zur geometrischen Ablenkung von Licht und können zur Realisierung von hochintegrierten Systemen zur Ausgabe (Laser-Projektor) oder Aufnahme (Laser-Imager) von Daten genutzt werden. Zum Entwurf von Mikroaktoren gibt es eine Reihe von Arbeiten, die sich meist auf ein konkretes Antriebsprinzip beziehen oder den Entwurf im Allgemeinen behandeln. Die vorliegende Arbeit verfolgt daher das Ziel, speziell die Randbedingungen beim Entwurf resonanter Mikroaktoren mit Out-of-plane-comb-Antrieb zu identifizieren bzw. zu systematisieren sowie die gewonnenen Erkenntnisse in einem effizienten Entwurfsprozess umzusetzen. Dabei sollen möglichst auch relevante nichtlineare Effekte berücksichtigt werden, sodass sich neue Möglichkeiten zur Optimierung der Bauelemente und damit zur Erweiterung des Entwurfsraums ergeben.:1 Einordnung und Ziele der Arbeit 2 Grundlagen und Stand der Technik 2.1 Herstellungstechnologien 2.2 MEMS-Aktoren 2.2.1 Antriebsprinzipien 2.2.2 Elektrostatische Antriebe 2.3 Der Fraunhofer IPMS Mikroscannerspiegel 2.3.1 Synchronisierte Anregung 2.3.2 Parametrische Anregung 2.3.3 Anwendungsmöglichkeiten und Grenzen 2.4 Motivationen der Arbeit 3 Randbedingungen beim Entwurf 3.1 Vereinbarungen und Definitionen 3.1.1 Material- und Strukturvereinfachungen 3.1.2 Koordinatensysteme 3.1.3 Mathematische Vereinfachungen und Definitionen 3.2 Strukturmechanische Randbedingungen 3.2.1 Richtungsabhängige Materialeigenschaften 3.2.2 Geometrische Nichtlinearitäten 3.2.3 Strukturmechanische Spannungen 3.2.4 Eigenschwingungen 3.2.5 Fertigungstoleranzen 3.2.6 Dynamische Deformation 3.2.7 Strukturdämpfung 3.3 Fluidmechanische Randbedingungen 3.3.1 Näherungen zur Slip-Korrektur 3.3.2 Gültigkeit der quasistatischen Näherung 3.3.3 Dämpfungsmechanismen innerhalb der Kammstruktur 3.3.4 Dämpfungsmechanismen der bewegten Spiegelplatte 3.4 Randbedingungen der Elektrik bzw. Elektrostatik 3.4.1 Antriebskapazitäten und Randfelder 3.4.2 Spannungsfestigkeit 3.4.3 Leistungsaufnahme 3.4.4 Elektromechanische Stabilität 3.5 Optische Randbedingungen 4 Nichtlineare Dynamik 4.1 Stabilitätsanalyse 4.1.1 Fixpunkte und Grenzzyklen 4.1.2 Stabilität 4.1.3 Bifurkationen 4.1.4 Diskussion 4.2 Geometrische Nichtlinearitäten 4.2.1 Einfluss auf die Dynamik 4.2.2 Diskussion 4.2.3 Möglichkeiten zur Beeinflussung 5 Werkzeuge für den Entwurf 5.1 Anforderungen an Entwurfswerkzeuge 5.1.1 Kopplung physikalischer Domänen 5.1.2 Spezielle Anforderungen an FEM-Werkzeuge 5.1.3 Ordnungsreduktion 5.1.4 Spezielle Anforderungen an Optimierungswerkzeuge 5.2 Relevante Entwurfswerkzeuge 5.2.1 MOSCITO Optimierungsumgebung 5.2.2 MATLAB-Toolbox SUGAR 5.3 Klassenbibliothek IMtk 5.3.1 Programmierparadigmen 5.3.2 Vererbungsstrategie 5.3.3 Ordnungsreduktion 5.3.4 Verifikation der Modelle 5.3.5 Gültigkeitsbedingungen 6 Entwurfsprozess 6.1 Strategie des Bauelemententwurfs 6.2 Entwurfsbeispiel 6.2.1 Anforderungen und Randbedingungen 6.2.2 Vorauslegung 6.2.3 Eigenwertanalyse 6.2.4 Statische nichtlineare Analysen 6.2.5 Deformationsanalyse 6.2.6 Statische nichtlineare gekoppelte Analysen 6.2.7 Dynamische nichtlineare gekoppelte Analysen 6.3 Diskussion 7 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Listings Anlagenverzeichnis A Materialeigenschaften A.1 Einkristallines Silizium A.2 Umgebungsluft B MEMS-Prozess des Fraunhofer IPMS B.1 Prozessablaufplan AME1 B.2 Prozessabh ̈angige Materialeigenschaften C Strukturmechanische FE-Analysen C.1 FEM-Werkzeuge am Fraunhofer IPMS C.1.1 ANSYS C.1.2 COMSOL Multiphysics TM C.2 Nichtlinearitäten prismatischer Torsionsstäbe C.3 Typische Eigenformen von Mikroscannerspiegeln C.4 Mechanische Spannungen in Torsionsfedern C.5 Dynamische Deformation der Spiegelplatte C.6 Konvergenzeigenschaften von FE-Netzen D Dämpfungsmechanismen D.1 Slide-film-Dämpfung D.2 Squeeze-film-Dämpfung E Bewegungs-Dgl. des IPMS Mikroscannerspiegels E.1 Fixpunkte E.2 Stabilität E.3 Bifurkationen E.4 Phasenportraits F IMtk-Klassenbibliothek F.1 Klassenübersicht F.2 Funktionen F.3 Datenstruktur IMTK F.4 Eigenschaften und Methoden der Basisklasse imtk element F.5 Implementation F.6 Beispiele G Experimentelle Ergebnisse (Entwurfsbeispiel) G.1 Charakterisierung G.1.1 Synchronisierte Anregung G.1.2 Parametrische Anregung G.2 Dynamische Deformation / Electrostatically driven microsystems are utilized in technical systems for several years. For instance, they are used in automotive applications as acceleration sensors or angular rate sensors. New fields of applications appear especially for actuators. The scanning micromirror of the Fraunhofer Institute for Photonic Microsystems is such an actuator. It is a micro-­optical-­electrical microsystem (MOEMS) which is driven resonantly by an electrostatic comb drive and can be used in scanning laser imaging systems or laser projectors. Several technical and scientific publications occupy with the design and the simulation of microactuators, which refer usually to a concrete drive principle or to the issues of design in general. The intention of this thesis is to identify and systematize particularly the boundary conditions of design regarding to resonant micro actuators with out-­of-­plane­comb drive. The findings are implemented in efficient design tools and design processes. One emphasis thereby is the investigation of nonlinear properties and effects. This includes geometrically non-­linearities of suspensions as well as non-linearities caused by fluid damping and the electrostatic comb drive. The findings are utilized in an analytical, nonlinear stability analysis of the device's equation of motion as well as in an object oriented software library for the MATLAB environment, which can be used to create nonlinear reduced order models of scanning micromirrors. With the developed techniques for design and optimization the available parameter range of scanning micromirrors can be extended. By that means, it is possible to improve the properties of existing devices as well as create new devices with outreaching performance.:1 Einordnung und Ziele der Arbeit 2 Grundlagen und Stand der Technik 2.1 Herstellungstechnologien 2.2 MEMS-Aktoren 2.2.1 Antriebsprinzipien 2.2.2 Elektrostatische Antriebe 2.3 Der Fraunhofer IPMS Mikroscannerspiegel 2.3.1 Synchronisierte Anregung 2.3.2 Parametrische Anregung 2.3.3 Anwendungsmöglichkeiten und Grenzen 2.4 Motivationen der Arbeit 3 Randbedingungen beim Entwurf 3.1 Vereinbarungen und Definitionen 3.1.1 Material- und Strukturvereinfachungen 3.1.2 Koordinatensysteme 3.1.3 Mathematische Vereinfachungen und Definitionen 3.2 Strukturmechanische Randbedingungen 3.2.1 Richtungsabhängige Materialeigenschaften 3.2.2 Geometrische Nichtlinearitäten 3.2.3 Strukturmechanische Spannungen 3.2.4 Eigenschwingungen 3.2.5 Fertigungstoleranzen 3.2.6 Dynamische Deformation 3.2.7 Strukturdämpfung 3.3 Fluidmechanische Randbedingungen 3.3.1 Näherungen zur Slip-Korrektur 3.3.2 Gültigkeit der quasistatischen Näherung 3.3.3 Dämpfungsmechanismen innerhalb der Kammstruktur 3.3.4 Dämpfungsmechanismen der bewegten Spiegelplatte 3.4 Randbedingungen der Elektrik bzw. Elektrostatik 3.4.1 Antriebskapazitäten und Randfelder 3.4.2 Spannungsfestigkeit 3.4.3 Leistungsaufnahme 3.4.4 Elektromechanische Stabilität 3.5 Optische Randbedingungen 4 Nichtlineare Dynamik 4.1 Stabilitätsanalyse 4.1.1 Fixpunkte und Grenzzyklen 4.1.2 Stabilität 4.1.3 Bifurkationen 4.1.4 Diskussion 4.2 Geometrische Nichtlinearitäten 4.2.1 Einfluss auf die Dynamik 4.2.2 Diskussion 4.2.3 Möglichkeiten zur Beeinflussung 5 Werkzeuge für den Entwurf 5.1 Anforderungen an Entwurfswerkzeuge 5.1.1 Kopplung physikalischer Domänen 5.1.2 Spezielle Anforderungen an FEM-Werkzeuge 5.1.3 Ordnungsreduktion 5.1.4 Spezielle Anforderungen an Optimierungswerkzeuge 5.2 Relevante Entwurfswerkzeuge 5.2.1 MOSCITO Optimierungsumgebung 5.2.2 MATLAB-Toolbox SUGAR 5.3 Klassenbibliothek IMtk 5.3.1 Programmierparadigmen 5.3.2 Vererbungsstrategie 5.3.3 Ordnungsreduktion 5.3.4 Verifikation der Modelle 5.3.5 Gültigkeitsbedingungen 6 Entwurfsprozess 6.1 Strategie des Bauelemententwurfs 6.2 Entwurfsbeispiel 6.2.1 Anforderungen und Randbedingungen 6.2.2 Vorauslegung 6.2.3 Eigenwertanalyse 6.2.4 Statische nichtlineare Analysen 6.2.5 Deformationsanalyse 6.2.6 Statische nichtlineare gekoppelte Analysen 6.2.7 Dynamische nichtlineare gekoppelte Analysen 6.3 Diskussion 7 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Listings Anlagenverzeichnis A Materialeigenschaften A.1 Einkristallines Silizium A.2 Umgebungsluft B MEMS-Prozess des Fraunhofer IPMS B.1 Prozessablaufplan AME1 B.2 Prozessabh ̈angige Materialeigenschaften C Strukturmechanische FE-Analysen C.1 FEM-Werkzeuge am Fraunhofer IPMS C.1.1 ANSYS C.1.2 COMSOL Multiphysics TM C.2 Nichtlinearitäten prismatischer Torsionsstäbe C.3 Typische Eigenformen von Mikroscannerspiegeln C.4 Mechanische Spannungen in Torsionsfedern C.5 Dynamische Deformation der Spiegelplatte C.6 Konvergenzeigenschaften von FE-Netzen D Dämpfungsmechanismen D.1 Slide-film-Dämpfung D.2 Squeeze-film-Dämpfung E Bewegungs-Dgl. des IPMS Mikroscannerspiegels E.1 Fixpunkte E.2 Stabilität E.3 Bifurkationen E.4 Phasenportraits F IMtk-Klassenbibliothek F.1 Klassenübersicht F.2 Funktionen F.3 Datenstruktur IMTK F.4 Eigenschaften und Methoden der Basisklasse imtk element F.5 Implementation F.6 Beispiele G Experimentelle Ergebnisse (Entwurfsbeispiel) G.1 Charakterisierung G.1.1 Synchronisierte Anregung G.1.2 Parametrische Anregung G.2 Dynamische Deformation
6

Compact few-cycle mid-wave and long-wave infrared OPCPA / based on a Cr:ZnS front-end

Fürtjes, Pia Johanna 27 November 2023 (has links)
Die Weiterentwicklung von Ultrakurzimpulslaserquellen hat die Horizonte für Wissenschaft, Medizin und Industrie stetig erweitert. Ultrakurze Impulsdauern und hohe Energien erzeugen Spitzenleistungen auf der Gigawatt-Skala, deren zeitliche und spektrale Charakteristik ideale Voraussetzungen für nichtlineare zeitaufgelöste Spektroskopie und ultraschnelle nichtlineare Optik bieten. Die Untersuchung von Molekülschwingungen im sogenannten Fingerabdrucksbereich (engl. fingerprint region) und die effiziente lasergetriebene Erzeugung von Hohen-Harmonischen- und Röntgenimpulsen benötigen Laserquellen im mittleren bis langwelligen Infrarot. Da oberhalb einer Wellenlänge von 4 μm keine Festkörperlaserquellen existieren, hat sich optische parametrische Verstärkung zur Schlüsseltechnik in diesem Wellenlängenbereich entwickelt. In dieser Arbeit werden Laserimpulse oberhalb von 4 μm Wellenlänge mittels optischer parametrischer Verstärkung gestreckter Impulse erzeugt, deren Energien den Micro- bis Millijoule Bereich bei einer Kilohertz-Wiederholrate erreichen. Die Pumpwellenlänge von 2 μm ist vorteilhaft gegenüber den üblicherweise verwendeten Pumpen im nahen Infraroten und erlaubt zur Generation der Eingangsspektren besonders innovative kompakte Laserarchitekturen. Es werden zwei Systeme im mittleren und langwelligen Infrarot entwickelt basierend auf einem Cr:ZnS Eingangslaser, die bisherigen Systemen in Energie und Spitzenleistungen überlegen sind. Während sich die Laserquelle im mittleren Infraroten durch seine Durchstimmbarkeit auszeichnet, wird mit den langwelligen infraroten Impulsen erstmals einen nichtlineare Absorptionsmessung an Wasser durchgeführt. / The progress in the development of ultrafast laser sources has opened up new horizons in science, medicine and industry. Pulses of ultrashort duration and high energy reach gigawatt peak power which offer ideal conditions for time-resolved nonlinear absorption spectroscopy and ultrafast nonlinear optics. The investigation of vibrational states of biomolecules in the so-called fingerprint region and strong-field experiments aiming for the generation of high-harmonics or x-rays quest for such laser sources in the mid- to long-infrared spectral range. Due to the lack of existing solid state lasers beyond 4 μm, optical parametric amplification has emerged as the key technique to generate adequate infrared pulses. In this work, optical parametric chirped pulse amplification (OPCPA) is the key technique used to generate 100 μJ-level energy pulses at kHz repetition rate beyond 4 μm. In this context, novel front-end architectures are designed, tailored to compactness and to exploit the advantages of 2 μm pumped OPCPA over the typically used near-infrared drivers around 1 μm. The novel front-end based on a femtosecond Cr:ZnS oscillator emitting 30 fs pulses at 2.4 μm provides the necessary spectral components for the 2 μm pump and the signal. Two OPCPA systems in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral region, superior in terms of pulse energy and peak power compared with existing systems, are developed. While the tunability of the first system is unique, the second system is used to for the first time demonstrate a nonlinear transmission experiment in water by direct excitation of the L2 libration.
7

Investigation of fundamental elements for active nanooptics

Kewes, Günter 17 February 2016 (has links)
Integrierte optoelektronische Anwendungen sind allgegenwärtig in moderner Technologie. Sie sind einerseits Schlüsselkomponenten in bekannten kommerziellen Produkten wie mobilen Geräten oder Flachbildschirmen, aber sie ermöglichen auch schnelle Netzwerke in Datenzentren. Um drängende Probleme im Zusammenhang mit dieser Technologie zu lösen, z.B. der hohe Energieverbrauch und die Verwendung und Rückgewinnung von seltenen Materialien, sucht die Forschung nach Alternativen. Insbesondere effiziente, nicht-lineare Prozesse werden benötigt, um Signale zu schalten. Einige vielversprechende Konzepte wurden in der Nanooptik vorgeschlagen. Diese basieren insbesondere auf plasmonischen Prozessen, die im Frequenzbereich von sichtbarem Licht stattfinden. Drei dieser Konzepte werden in dieser Arbeit diskutiert und untersucht. Teil 1 der Arbeit handelt von der konkreten Umsetzung eines Konzepts, das eine starke Interaktion zwischen einzelnen Quantenemittern und dem geführten Lichtfeld an metallischen Wellenleitern ausnutzt. Hierdurch können prinzipiell extrem schwache Lichtsignale zum Schalten verwendet werden. In Teil 2 wird die Miniaturisierung von Lasern untersucht. Kleine Lasersysteme finden schon heute Anwendungen in verschiedensten Bereichen der Optoelektronik. Diese Arbeit behandelt die kleinstmögliche Realisierung von Lasern, sogenannte Nanolaser, und untersucht deren Anwendbarkeit. Teil 3 widmet sich dem relativ neuen Materialsystem Graphen. In dieser Arbeit wird untersucht, in wie weit sich Graphen zur Manipulation von sichtbarem Licht verwenden lässt, beziehungsweise, in wie weit Graphen plasmonische Eigenschaften aufweist. Die Analyse der Konzepte liefert neue Erkenntnisse zu kontrovers diskutierten Themen bezüglich der Vorzüge und Nachteile der Miniaturisierung mit Hilfe der Plasmonik. Die Erkenntnisse geben des Weiteren klare Richtlinien zur Optimierung der Konzepte hin zu effizienteren und praktikableren Designs. / Integrated optoelectronic applications are omnipresent in modern technology. They are key constituents of familiar commercial products such as mobile devices and flat screens but also enable fast networks in data centers. In order to solve pressing problems induced by the technology, such as high power consumption and the use and recycling of rare materials, research tries to explore alternatives. In particular, there is a need for efficient, non-linear processes that could be employed for switching of signals. Some promising concepts have been proposed using nanooptics, especially based on plasmonic processes that take place at frequencies of visible light. Three of these concepts are discussed and investigated in this work. Part 1 of this work is about a concrete realization of a concept which makes use of a strong interaction between individual quantum emitters and guided light-fields of metallic waveguides. With this approach, in principle extremely weak light-signals can be sufficient for switching. In part 2 the miniaturization of lasers is investigated. Small laser-systems are already used today for a broad range of applications in optoelectronics. This works examines the smallest possible realization of lasers, so-called nanolasers, and investigates their applicability. Part 3 focuses on the relatively young material graphene. In this work it is investigated in which way graphene could be used for the manipulation of visible light, and accordingly, whether graphene features plasmonic properties. The analysis of these concepts provides new insights to controversial discussed topics with respect to the advantages and disadvantages of miniaturization with the help of plasmonics. Further, the findings give clear advice for the optimization of the concepts towards more efficient and practicable designs.
8

Hydrodynamics of flagellar swimming and synchronization

Klindt, Gary 15 January 2018 (has links) (PDF)
What is flagellar swimming? Cilia and flagella are whip-like cell appendages that can exhibit regular bending waves. This active process emerges from the non-equilibrium dynamics of molecular motors distributed along the length of cilia and flagella. Eukaryotic cells can possess many cilia and flagella that beat in a coordinated fashion, thus transporting fluids, as in mammalian airways or the ventricular system inside the brain. Many unicellular organisms posses just one or two flagella, rendering them microswimmers that are propelled through fluids by the flagellar beat including sperm cells and the biflagellate green alga Chlamydomonas. Objectives. In this thesis in theoretical biological physics, we seek to understand the nonlinear dynamics of flagellar swimming and synchronization. We investigate the flow fields induced by beating flagella and how in turn external hydrodynamic flows change speed and shape of the flagellar beat. This flagellar load-response is a prerequisite for flagellar synchronization. We want to find the physical principals underlying stable synchronization of the two flagella of Chlamydomonas cells. Results. First, we employed realistic hydrodynamic simulations of flagellar swimming based on experimentally measured beat patterns. For this, we developed analysis tools to extract flagellar shapes from high-speed videoscopy data. Flow-signatures of flagellated swimmers are analysed and their effect on a neighboring swimmer is compared to the effect of active noise of the flagellar beat. We were able to estimate a chemomechanical energy efficiency of the flagellar beat and determine its waveform compliance by comparing findings from experiments, in which a clamped Chlamydomonas is exposed to external flow, to predictions from an effective theory that we designed. These mechanical properties have interesting consequences for the synchronization dynamics of Chlamydomonas, which are revealed by computer simulations. We propose that direct elastic coupling between the two flagella of Chlamydomonas, as suggested by recent experiments, in combination with waveform compliance is crucial to facilitate in-phase synchronization of the two flagella of Chlamydomonas.
9

Hydrodynamics of flagellar swimming and synchronization

Klindt, Gary 15 January 2018 (has links)
What is flagellar swimming? Cilia and flagella are whip-like cell appendages that can exhibit regular bending waves. This active process emerges from the non-equilibrium dynamics of molecular motors distributed along the length of cilia and flagella. Eukaryotic cells can possess many cilia and flagella that beat in a coordinated fashion, thus transporting fluids, as in mammalian airways or the ventricular system inside the brain. Many unicellular organisms posses just one or two flagella, rendering them microswimmers that are propelled through fluids by the flagellar beat including sperm cells and the biflagellate green alga Chlamydomonas. Objectives. In this thesis in theoretical biological physics, we seek to understand the nonlinear dynamics of flagellar swimming and synchronization. We investigate the flow fields induced by beating flagella and how in turn external hydrodynamic flows change speed and shape of the flagellar beat. This flagellar load-response is a prerequisite for flagellar synchronization. We want to find the physical principals underlying stable synchronization of the two flagella of Chlamydomonas cells. Results. First, we employed realistic hydrodynamic simulations of flagellar swimming based on experimentally measured beat patterns. For this, we developed analysis tools to extract flagellar shapes from high-speed videoscopy data. Flow-signatures of flagellated swimmers are analysed and their effect on a neighboring swimmer is compared to the effect of active noise of the flagellar beat. We were able to estimate a chemomechanical energy efficiency of the flagellar beat and determine its waveform compliance by comparing findings from experiments, in which a clamped Chlamydomonas is exposed to external flow, to predictions from an effective theory that we designed. These mechanical properties have interesting consequences for the synchronization dynamics of Chlamydomonas, which are revealed by computer simulations. We propose that direct elastic coupling between the two flagella of Chlamydomonas, as suggested by recent experiments, in combination with waveform compliance is crucial to facilitate in-phase synchronization of the two flagella of Chlamydomonas.:1 Introduction 1.1 Physics of cell motility: flagellated swimmers as model system 2 1.1.1 Tissue cells and unicellular eukaryotic organisms have cilia and flagella 2 1.1.2 The conserved architecture of flagella 3 1.1.3 Synchronization in collections of flagella 5 1.2 Hydrodynamics at the microscale 9 1.2.1 Navier-Stokes equation 10 1.2.2 The limit of low Reynolds number 10 1.2.3 Multipole expansion of flow fields 11 1.3 Self-propulsion by viscous forces 13 1.3.1 Self propulsion requires broken symmetries 13 1.3.2 Signatures of flowfields: pusher & puller 15 1.4 Overview of the thesis 16 2 Flow signatures of flagellar swimming 2.1 Self-propulsion of flagellated swimmers 20 2.1.1 Representation of flagellar shapes 20 2.1.2 Computation of hydrodynamic friction forces 21 2.1.3 Material frame and rigid-body transformations 22 2.1.4 The grand friction matrix 23 2.1.5 Dynamics of swimming 23 2.2 The hydrodynamic far field: pusher and puller 26 2.2.1 The flow generated by a swimmer 26 2.2.2 Force dipole characterization 27 2.2.3 Flagellated swimmers alternate between pusher and puller 29 2.2.4 Implications for two interacting Chlamydomonas cells 31 2.3 Inertial screening of oscillatory flows 32 2.3.1 Convection and oscillatory acceleration 33 2.3.2 The oscilet: fundamental solution of unsteady flow 35 2.3.3 Screening length of oscillatory flows 35 2.4 Energetics of flagellar self-propulsion 36 2.4.1 Impact of inertial screening on hydrodynamic dissipation 37 2.4.2 Case study: the green alga Chlamydomonas 38 2.4.3 Discussion: evolutionary optimization and the number of molecular motors 38 2.5 Summary 39 3 The load-response of the flagellar beat 3.1 Experimental collaboration: flagellated swimmers exposed to flows 41 3.1.1 Description of the experimental setup 42 3.1.2 Computed flow profile in the micro-fluidic device 43 3.1.3 Image processing and flagellar tracking 43 3.1.4 Mode decomposition and limit-cycle reconstruction 47 3.1.5 Changes of limit-cycle dynamics: deformation, translation, acceleration 49 3.2 An effective theory of flagellar oscillations 50 3.2.1 A balance of generalized forces 50 3.2.2 Hydrodynamic friction in generalized coordinates 51 3.2.3 Intra-flagellar friction 52 3.2.4 Calibration of active flagellar driving forces 52 3.2.5 Stability of the limit cycle of the flagellar beat 53 3.2.6 Equations of motion 55 3.3 Comparison of theory and experiment 56 3.3.1 Flagellar mean curvature 57 3.3.2 Susceptibilities of phase speed and amplitude 57 3.3.3 Higher modes and stalling of the flagellar beat at high external load 59 3.3.4 Non-isochrony of flagellar oscillations 63 3.4 Summary 63 4 Flagellar load-response facilitates synchronization 4.1 Synchronization to external driving 65 4.2 Inter-flagellar synchronization in the green alga Chlamydomonas 67 4.2.1 Equations of motion for inter-flagellar synchronization 68 4.2.2 Synchronization strength for free-swimming and clamped cells 70 4.2.3 The synchronization strength depends on energy efficiency and waveform compliance 73 4.2.4 The case of an elastically clamped cell 74 4.2.5 Basal body coupling facilitates in-phase synchronization 75 4.2.6 Predictions for experiments 78 4.3 Summary 80 5 Active flagellar fluctuations 5.1 Effective description of flagellar oscillations 84 5.2 Measuring flagellar noise 84 5.2.1 Active phase fluctuations are much larger than thermal noise 84 5.2.2 Amplitude fluctuations are correlated 85 5.3 Active flagellar fluctuations result in noisy swimming paths 86 5.3.1 Effective diffusion of swimming circles of sperm cell 86 5.3.2 Comparison of the effect of noise and hydrodynamic interactions 87 5.4 Summary 88 6 Summary and outlook 6.1 Summary of our results 89 6.2 Outlook on future work 90 A Solving the Stokes equation A.1 Multipole expansion 95 A.2 Resistive-force theory 96 A.3 Fast multipole boundary element method 97 B Linearized Navier-Stokes equation B.1 Linearized Navier-Stokes equation 101 B.2 The case of an oscillating sphere 102 B.3 The small radius limit 103 B.4 Greens function 104 C Hydrodynamic friction C.1 A passive particle 107 C.2 Multiple Particles 107 C.3 Generalized coordinates 108 D Data analysis methods D.1 Nematic filter 111 D.1.1 Nemat 111 D.1.2 Nematic correlation 111 D.2 Principal-component analysis 112 D.3 The quality of the limit-cycle projections of experimental data 113 E Adler equation F Sensitivity analysis for computational results F.1 The distance function of basal coupling 117 F.2 Computed synchronization strength for alternative waveform 118 F.3 Insensitivity of computed load-response to amplitude correlation time 118 List of Symbols List of Figures Bibliography
10

Quantitative Analyse dynamischer nichtlinearer Panelmodelle / Analysis of dynamic nonlinear panel models

Bode, Oliver 06 July 2001 (has links)
No description available.

Page generated in 0.0494 seconds