• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Erzeugung von Oberflächenplasmonen mittels inelastischem Elektronentunneln

Jehnes, Eric 28 March 2019 (has links)
Diese Arbeit befasst sich mit der Herstellung und Charakterisierung von lichtemittierenden Tunnelkontakten. Eine an diese Kontakte angelegte Spannung bewirkt einen Tunnelstrom. Die tunnelnden Elektronen regen wiederum Oberflächenplasmonen an, welche durch Streuung als Licht ins Fernfeld abgestrahlt werden. Oberflächenplasmonen sind Oszillationen der Elektronendichte an Metalloberflächen. Sie werden durch eine elektromagnetische Welle, welche an die Oberfläche gebunden ist und sich an der Grenzfläche entlang ausbreiten kann, beschrieben. Die Anregung dieser Oberflächenwellen wird in Experimenten meist durch Lichtquellen wie Lasern realisiert. Es ist jedoch auch möglich, Oberflächenplasmonen durch geladene Teilchen zu erzeugen. Diese Arbeit setzt sich mit dem Anregen von Oberflächenplasmonen durch inelastisches Elektronentunneln auseinander. Es werden hierfür Metall-Isolator-Metall- (MIM) und Metall-Isolator-Halbleiter-Tunnelkontakte (MIS) hergestellt und charakterisiert. Ein angeregtes Oberflächenplasmon kann durch Streuung als Photon abgestrahlt werden. Dieses Licht wird im Rahmen dieser Arbeit genutzt, um die ablaufenden Prozesse zu analysieren. In den Untersuchungen gelang es, die Tunnelkontakte so herzustellen, dass sich ein fester Tunnelstrom einstellt. Durch Optimierung der Präparation und Materialwahl wurde weiterhin eine zeitlich stabile Lichtemission erzielt. Mittels der Kombination von Siliciumwafern mit monokristallinen Goldplättchen, konnten die Stabilität und die optischen Eigenschaften des emittierten Lichts optimiert werden. Darüber hinaus wurde ein hoher Polarisationsgrad erreicht, der mit amorphen Goldelektroden nicht möglich war. Die atomar flachen Goldplättchen führen weiterhin zur Unterdrückung von ungewünschter Plasmonenstreuung, welche auf Oberflächenrauheit zurückzuführen ist. Ebenso konnte gezeigt werden, dass in einer strukturierten Metallelektrode lokalisierte Oberflächenplasmonen angeregt werden. Hierdurch verändern sich charakteristische spektrale Eigenschaften des abgestrahlten Lichts. Die gewonnenen Erkenntnisse können dafür genutzt werden, extrem kleine Plasmonenquellen zu realisieren, welche sich direkt mit anderen plasmonischen Bauelementen, wie Wellenleitern, auf Chip-Niveau kombinieren lassen. Ebenso stellen die lichtemittierenden Tunnelkontakte robuste und schnelle elektro-optische Koppler dar.:Zusammenfassung 7 Abstract 8 Abkürzungen 9 1 Einleitung 11 2 Theorie 15 2.1 Elektrische Eigenschaften von Tunnelkontakten 15 2.2 Optische Eigenschaften von Tunnelkontakten 21 2.2.1 Elektrodynamische Beschreibung und Dispersionsrelation von Oberflächenplasmonen 21 2.2.2 Plasmonenanregung 24 2.2.3 Feldverteilung und Dispersionsrelation in Tunnelkontakten 25 3 Experimentelle Methoden 31 3.1 Probenherstellung 31 3.1.1 Präparation der Substrate 31 3.1.2 Monokristalline Goldflakes 32 3.1.3 Beschichtung 35 3.1.4 Photolithographie 38 3.1.5 Interferenzlithographie 40 3.1.6 Focussed Ion Beam Milling 45 3.2 Elektrische Charakterisierung 47 3.3 Optische Charakterisierung 48 3.3.1 Invertiertes optisches Mikroskop: Axiovert 200 48 3.3.2 Abbildung von Bildebene und Brennebene 50 3.3.3 Spektroskopie 51 3.3.4 Spektraler Messbereich und Transferfunktion 52 4 Al-Al2O3-Au Tunnelkontakte 57 4.1 Aufbau 57 4.2 Elektrische Eigenschaften 58 4.2.1 Stabilität und Schaltbarkeit 62 4.3 Optische Eigenschaften 65 4.3.1 Spektrale Eigenschaften 67 4.3.2 Emissionszentren 71 4.4 Morphologische Veränderungen 73 4.5 Zusammenfassung 76 5 Si-SiO2-Au Tunnelkontakte 79 5.1 Aufbau 79 5.2 Elektrische Eigenschaften 80 5.2.1 Ohmscher Kontakt zu Silicium 81 5.2.2 Einfluss der Dotierung 83 5.2.3 Einfluss des Isolatormaterials 85 5.2.4 Stabilität 86 5.3 Optische Eigenschaften 89 5.3.1 Spektrale Eigenschaften 90 5.3.2 Abstrahlcharakteristik und -mechanismus 92 5.3.3 Emission unterhalb des Quantenlimits 95 5.3.4 Emissionszentren 97 5.3.5 Stabilität der Emission 103 5.3.6 Strukturierte Tunnelkontakte 104 5.4 Zusammenfassung 114 6 Monokristalline Goldflakes 117 6.1 Besonderheiten der Goldflakes 117 6.2 Aufbau 120 6.3 Optische Eigenschaften 122 6.3.1 Spektrale Eigenschaften 125 6.3.2 Vergleich zu Si-SiO2-Au Tunnelkontakten 126 6.4 Tunnelkontakte mit strukturierten Flakes 128 6.5 Zusammenfassung 133 7 Zusammenfassung und Ausblick 135 Literatur 145 / This thesis deals with the fabrication and characterization of light emitting tunnel junctions. A voltage applied to these structures causes a tunneling current. The tunneling electrons in turn excite surface plasmons, which are scattered into photons that are emitted into the far field. Surface plasmon resonances are the collective oscillation of the electron density at a metal interface. Associated with them is an electromagnetic wave which is bound to the interface and can propagate along it. The excitation of these surface waves in experiments is often achieved by lightsources like lasers. It is, however, also possible to generate surface plasmons by charged particles. This work deals with the excitation of surface plasmons by inelastic electron tunneling. To investigate this, metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) tunnel junctions are produced and characterized. The excited surface plasmons can be scattered and emitted as photons. This light is used to study the underlying processes. It was possible to produce the tunnel junctions in such a way that a stable tunnel current is achieved. By optimizing the preparation and choice of materials, a continous light emission without fluctuations was achieved. By combining silicon wafers with monocrystalline gold platelets, the stability and optical properties of the emitted light was optimized. Moreover, a high degree of polarization was achieved, which was not possible with amorphous gold electrodes. The atomically flat gold platelets further lead to the suppression of unwanted plasmon scattering, which is caused by surface roughness. It has also been shown that localized surface plasmons are excited in a structured metal electrode, which changes characteristic spectral properties of the emitted light. The knowledge gained can be used to realize extremely small plasmon sources, which can be combined directly with other plasmonic components, such as waveguides, on the chip level. Likewise, the light-emitting tunnel junctions are robust and fast electro-optical couplers.:Zusammenfassung 7 Abstract 8 Abkürzungen 9 1 Einleitung 11 2 Theorie 15 2.1 Elektrische Eigenschaften von Tunnelkontakten 15 2.2 Optische Eigenschaften von Tunnelkontakten 21 2.2.1 Elektrodynamische Beschreibung und Dispersionsrelation von Oberflächenplasmonen 21 2.2.2 Plasmonenanregung 24 2.2.3 Feldverteilung und Dispersionsrelation in Tunnelkontakten 25 3 Experimentelle Methoden 31 3.1 Probenherstellung 31 3.1.1 Präparation der Substrate 31 3.1.2 Monokristalline Goldflakes 32 3.1.3 Beschichtung 35 3.1.4 Photolithographie 38 3.1.5 Interferenzlithographie 40 3.1.6 Focussed Ion Beam Milling 45 3.2 Elektrische Charakterisierung 47 3.3 Optische Charakterisierung 48 3.3.1 Invertiertes optisches Mikroskop: Axiovert 200 48 3.3.2 Abbildung von Bildebene und Brennebene 50 3.3.3 Spektroskopie 51 3.3.4 Spektraler Messbereich und Transferfunktion 52 4 Al-Al2O3-Au Tunnelkontakte 57 4.1 Aufbau 57 4.2 Elektrische Eigenschaften 58 4.2.1 Stabilität und Schaltbarkeit 62 4.3 Optische Eigenschaften 65 4.3.1 Spektrale Eigenschaften 67 4.3.2 Emissionszentren 71 4.4 Morphologische Veränderungen 73 4.5 Zusammenfassung 76 5 Si-SiO2-Au Tunnelkontakte 79 5.1 Aufbau 79 5.2 Elektrische Eigenschaften 80 5.2.1 Ohmscher Kontakt zu Silicium 81 5.2.2 Einfluss der Dotierung 83 5.2.3 Einfluss des Isolatormaterials 85 5.2.4 Stabilität 86 5.3 Optische Eigenschaften 89 5.3.1 Spektrale Eigenschaften 90 5.3.2 Abstrahlcharakteristik und -mechanismus 92 5.3.3 Emission unterhalb des Quantenlimits 95 5.3.4 Emissionszentren 97 5.3.5 Stabilität der Emission 103 5.3.6 Strukturierte Tunnelkontakte 104 5.4 Zusammenfassung 114 6 Monokristalline Goldflakes 117 6.1 Besonderheiten der Goldflakes 117 6.2 Aufbau 120 6.3 Optische Eigenschaften 122 6.3.1 Spektrale Eigenschaften 125 6.3.2 Vergleich zu Si-SiO2-Au Tunnelkontakten 126 6.4 Tunnelkontakte mit strukturierten Flakes 128 6.5 Zusammenfassung 133 7 Zusammenfassung und Ausblick 135 Literatur 145
2

Photochemical Tuning of Surface Plasmon Resonances in Metal Nanoparticles / Photochemische Abstimmung von Oberflächenplasmon-Resonanzen in metallischen Nanopartikeln

Härtling, Thomas 07 July 2009 (has links) (PDF)
Illuminated metal nanoparticles (MNPs) feature collective electron oscillations (so-called localized surface plasmons or LSPs) which facilitate concentrating light-matter interactions to length scales below the diffraction limit. Part I of this book describes two applications of this confinement effect. Firstly, the use of single particles as optically active probes for scanning near-field optical microscopy is demonstrated. Secondly, fluorescence enhancement in the vicinity of a single MNP is described theoretically. This description focuses on how the particle diameter and the surrounding medium influence the enhancement. It turned out that in these two examples the optical signal levels can be improved by manipulating the spectral LSP resonance position of the particles. This finding triggered the search for a method allowing optical particle tuning. Part II of this thesis describes an approach which allows such a spectral LSP manipulation on the single-particle level. The method makes use of the optically induced reduction of metal salt complexes in solution, which leads to the deposition of thin layers of elemental metal onto single, intentionally addressed particles. The deposition process is monitored by optical LSP analysis, and thus the tuning of the optical particle properties is controlled in situ. With this technique, a manipulation of both the size and the shape of single nanoparticles was achieved. Initial experiences were gained by manipulating spherical and ellipsoidal gold particles, for which a red- and a blueshift of the LSP resonance was observed, respectively. The insights obtained from these experiments were then applied to tune the interparticle separation in nanoparticle pairs, i.e., to tune the resonance wavelength of these plasmonic nanoresonators. Subsequently, single resonators were used to reshape the fluorescence emission spectrum of organic molecules. Besides size and shape, also material parameters such as the surface roughness and the surface material composition influence the optical properties of MNPs. Both aspects are addressed using the example of rough platinum spheres and demonstrating the fabrication of bimetallic core-shell particles. As the material compositon of particles not only influences their optical, but for example also their catalytic or magnetic properties, photochemical metal deposition with in-situ optical LSP read-out builds a bridge to other fields of nanoscience. The presented method is a versatile tool for the fabrication and manipulation of nanostructures, and it is not limited to the field of plasmonics. / Metallische Nanopartikel (MNP) weisen unter Beleuchtung kollektive Schwingungen des Elektronengases auf (sogenannte lokalisierte Oberflächenplasmonen oder LOP). Die dadurch entstehende elektromagnetische Feldverteilung um die Partikel erlaubt die Konzentration von Licht-Materie-Wechselwirkungen auf einen Größenbereich unterhalb des Beugungslimits. In Teil I des vorliegenden Buches werden zwei Anwendungen dieses Konzentrationseffekts beschrieben. Zum einen wird die Verwendung eines einzelnen Partikels als Rastersonde für die optische Nahfeldmikroskopie gezeigt. Zum anderen wird die Fluoreszenzverstärkung in der unmittelbaren Umgebung eines Partikels untersucht. In letzterem Fall liegt der Fokus auf dem Einfluss der Partikelgröße und des Umgebungsmediums auf den Verstärkungsfaktor. Beide Untersuchungen zeigten, dass die Stärke der auftretenden optischen Signale von einer gezielten Steuerung der LOPResonanz profitieren kann. Diese Erkenntnis führte zur Entwicklung einer Methode, welche eine solche spektrale LOP-Steuerung erlaubt. Mit der in Teil II beschriebenen photochemischen Abscheidung von Metall auf einzelne Partikel wurde ein geeigneter Ansatz gefunden. Dabei wird die optisch induzierte Reduktion von Metallsalzkomplexen in einer Lösung ausgenutzt, um dünne Metallschichten auf gezielt ausgewählte Partikel aufzubringen. Der Abscheidungsprozess wird optisch über die Änderung der LOP-Resonanz des belichteten Partikels überwacht. Somit können dessen optische Eigenschaften gezielt in situ eingestellt werden. Mit der beschriebenen Technik können die Größe und die Form einzelner metallischer Partikel beeinflusst werden, was sich in einer Rot- bzw. Blauverschiebung der LOPResonanz äußert. Dieses Prinzip konnte zuerst an sphärischen und ellipsoidalen Goldpartikeln gezeigt werden. Die gewonnen Erkenntnisse wurden dann auf die gezielte Einstellung des Teilchenabstandes in Partikelpaaren übertragen, d. h., die Resonanzwellenlänge solcher plasmonischer Nanoresonatoren wurde gezielt manipuliert. Die Resonatoren konnten in einem zweiten Schritt zur Steuerung des Fluoreszenzspektrums organischer Moleküle eingesetzt werden. Neben Größe und Form spielen auch Materialparameter wie die Oberflächenrauigkeit und das Oberflächenmaterial eine wichtige Rolle für die optischen Eigenschaften der Partikel. Diese Parameter wurden am Beispiel von rauen Platinpartikeln sowie an bimetallischen Kern-Schale-Partikeln untersucht. Da das Oberflächenmaterial nicht nur die optischen, sondern z. B. auch katalytischen und magnetischen Eigenschaften der Partikel beeinflusst, verbindet die vorgestellte Methode die Plasmonik mit vielen anderen Bereichen der Nanotechnologie. Sie stellt eine vielseitige Technik zur Herstellung und Manipulation von Nanostrukturen dar, ohne dabei auf die Nanooptik limitiert zu sein.
3

Ultrafast Nonlinear Nano-Optics via Collinear Characterization of Few-Cycle Pulses

Hyyti, Janne Juhani 14 September 2018 (has links)
Die Methode „interferometric frequency-resolved optical gating“ (iFROG) zur Charakterisierung ultrakurzer Laserimpulse wurde erweitert. Als optische Nichtlinearität werden sowohl die Erzeugung der 2. als auch der 3. Harmonischen (THG) separat verwendet. Eine iFROG-Messung stellt ein inverses Problem dar, bei dem die Amplitude und Phase des elektrischen Feldes des Laserimpulses nur durch einen iterativen Algorithmus rekonstruiert werden kann. In dieser Arbeit wird ein mathematischer Formalismus entwickelt und mit einem evolutionären Optimierungsalgorithmus kombiniert, um einen neuartigen Impuls-Rekonstruktions-Algorithmus für iFROG zu erschaffen. Während iFROG ursprünglich ausschließlich zur Charakterisierung von Laserimpulsen konzipiert wurde, kann die Technik gleichermaßen für spektroskopische Zwecke eingesetzt werden. Wird das nichtlineare Medium in iFROG durch ein Untersuchungsobjekt ersetzt und ein bekannter Laserimpuls erneut charakterisiert, so kann die Antwortfunktion des Untersuchungsobjekts mit einer sub-Femtosekunden-Auflösung entschlüsselt werden. Da für die THG-Variante bisher keine Lösung bekannt ist, ermöglicht der vorgestellte Rekonstruktion-Algorithmus die erstmalige Nutzung von iFROG zur Untersuchung ultraschneller nichtlinearer Effekte dritter Ordnung. Die spektroskopische Fähigkeit von iFROG wird durch das Studium von drei unterschiedlichen physikalischen Systemen (Nanostrukturen) geprüft. In ZnO-Nanostäben wird die Leistungsabhängigkeit der durch Multiphotonenabsorption induzierten Lumineszenz gemessen, wobei nachgewiesen werden konnte, dass diese mit einer Lokalisierung des optischen Nahfelds verknüpft ist. Eine Dreiphotonenresonanz in einem dünnen Titandioxid Film und eine Oberflächenplasmonenresonanz in Au-Nanoantennen führen beide zu einer endlichen Lebensdauer der induzierten Materialpolarisation. Die iFROG-Methode wird verwendet, um die ultraschnelle zeitliche Dynamik dieser Systeme auf der Nanometer- und wenige Femtosekunden-Skala zu messen. / The ultrashort laser pulse characterization method “interferometric frequency-resolved optical gating” (iFROG) is extended. Both second- and third harmonic generation (SHG and THG) are separately employed as the optical nonlinearity. An iFROG measurement represents an inverse problem, where the electric field amplitude and phase of the underlying laser pulse can only be reconstructed by an iterative algorithm. In this work, a mathematical formalism for both the SHG and THG variants of iFROG is developed and combined with an evolutionary optimization algorithm to create a novel pulse retrieval algorithm for iFROG. While iFROG was originally conceived solely for pulse characterization, the technique can equally well be applied for spectroscopic purposes. By replacing the nonlinear medium in iFROG with an object of study, say a nanostructure, and characterizing a known pulse again such that the sample affects the harmonic generation process, the response of the object can be deciphered with sub-femtosecond precision. As no previous solution for the THG variant exists, the presented retrieval algorithm allows iFROG to be exploited in the study of ultrafast third-order nonlinear effects for the first time. The spectroscopic capability of iFROG is put to test by studying three differing physical systems, each consisting of nanostructures resting on dielectric substrates. Subjecting these specimen to few-cycle near-infrared pulses, a rich variety of nonlinear optical phenomena is observed. In ZnO nanorods, the power dependence of multiphoton-absorption induced luminescence is measured and found to be connected to a localization of the optical near-field. A three-photon resonance in a thin film of titania and a localized surface plasmon resonance in Au nanoantennas both lead to a finite lifetime of the induced material polarization. The THG-iFROG method is harnessed to measure the ultrafast temporal dynamics of these systems at the nanometer and few-femtosecond scales.
4

Investigation of fundamental elements for active nanooptics

Kewes, Günter 17 February 2016 (has links)
Integrierte optoelektronische Anwendungen sind allgegenwärtig in moderner Technologie. Sie sind einerseits Schlüsselkomponenten in bekannten kommerziellen Produkten wie mobilen Geräten oder Flachbildschirmen, aber sie ermöglichen auch schnelle Netzwerke in Datenzentren. Um drängende Probleme im Zusammenhang mit dieser Technologie zu lösen, z.B. der hohe Energieverbrauch und die Verwendung und Rückgewinnung von seltenen Materialien, sucht die Forschung nach Alternativen. Insbesondere effiziente, nicht-lineare Prozesse werden benötigt, um Signale zu schalten. Einige vielversprechende Konzepte wurden in der Nanooptik vorgeschlagen. Diese basieren insbesondere auf plasmonischen Prozessen, die im Frequenzbereich von sichtbarem Licht stattfinden. Drei dieser Konzepte werden in dieser Arbeit diskutiert und untersucht. Teil 1 der Arbeit handelt von der konkreten Umsetzung eines Konzepts, das eine starke Interaktion zwischen einzelnen Quantenemittern und dem geführten Lichtfeld an metallischen Wellenleitern ausnutzt. Hierdurch können prinzipiell extrem schwache Lichtsignale zum Schalten verwendet werden. In Teil 2 wird die Miniaturisierung von Lasern untersucht. Kleine Lasersysteme finden schon heute Anwendungen in verschiedensten Bereichen der Optoelektronik. Diese Arbeit behandelt die kleinstmögliche Realisierung von Lasern, sogenannte Nanolaser, und untersucht deren Anwendbarkeit. Teil 3 widmet sich dem relativ neuen Materialsystem Graphen. In dieser Arbeit wird untersucht, in wie weit sich Graphen zur Manipulation von sichtbarem Licht verwenden lässt, beziehungsweise, in wie weit Graphen plasmonische Eigenschaften aufweist. Die Analyse der Konzepte liefert neue Erkenntnisse zu kontrovers diskutierten Themen bezüglich der Vorzüge und Nachteile der Miniaturisierung mit Hilfe der Plasmonik. Die Erkenntnisse geben des Weiteren klare Richtlinien zur Optimierung der Konzepte hin zu effizienteren und praktikableren Designs. / Integrated optoelectronic applications are omnipresent in modern technology. They are key constituents of familiar commercial products such as mobile devices and flat screens but also enable fast networks in data centers. In order to solve pressing problems induced by the technology, such as high power consumption and the use and recycling of rare materials, research tries to explore alternatives. In particular, there is a need for efficient, non-linear processes that could be employed for switching of signals. Some promising concepts have been proposed using nanooptics, especially based on plasmonic processes that take place at frequencies of visible light. Three of these concepts are discussed and investigated in this work. Part 1 of this work is about a concrete realization of a concept which makes use of a strong interaction between individual quantum emitters and guided light-fields of metallic waveguides. With this approach, in principle extremely weak light-signals can be sufficient for switching. In part 2 the miniaturization of lasers is investigated. Small laser-systems are already used today for a broad range of applications in optoelectronics. This works examines the smallest possible realization of lasers, so-called nanolasers, and investigates their applicability. Part 3 focuses on the relatively young material graphene. In this work it is investigated in which way graphene could be used for the manipulation of visible light, and accordingly, whether graphene features plasmonic properties. The analysis of these concepts provides new insights to controversial discussed topics with respect to the advantages and disadvantages of miniaturization with the help of plasmonics. Further, the findings give clear advice for the optimization of the concepts towards more efficient and practicable designs.
5

Near-field spectroscopy of semiconductor device structures and plasmonic crystals

Malyarchuk, Viktor 31 August 2004 (has links)
Wir erforschen r?umlich Modenprofile in Wellenleitern mit Submikrometerabmessungen. Daf?r wird die optische Nahfeldmikroskopie in Kombination mit durchstimmbaren Laseranregungsquellen eingesetzt. Wir zeigen, wie das Nano-Photolumineszenzsignal von den Facetten von Quantentroglasern benutzt werden kann, um in diesem Bereich Oberfl?chenrekombination und Diffusionsl?ngeunabh?ngig voneinander zu bestimmen. Damit werden wichtige Informationen ?ber Haftstellen und deren Konzentration an Bauelementeoberfl?chen gewonnen. Eigenmoden in quasi-2-dimensionalen plasmonischen Kristallen sowie ihre Bandstruktur werden direkt gemessen und abgebildet. Messungen der Relaxation der Oberfl?chenplasmonanregung in der Raum- und Zeitdom?ne erlauben die Aufkl?rungder mikroskopischen Natur der Oberfl?chenplasmonemission. / Methods of the near-field spectroscopy combined with tunable laser excitation was used in order to perform investigation of the modeprofiles of submicron-sized waveguides in semiconductor device lasers. It was shown that the nano-photoluminescence signal at facets of a quantum well laser can be used to obtain surface recombination velocity and diffusion length independently and provide important information about concentration of trap-like defect states. Eigenmodes of the quasi-two-dimensional plasmonic crystals as well as their dispersion relations were directly mapped. The temporal and spatial domain measurement of the damping time of the surface plasmon excitation allow to reveal microscopic origins of surface plasmon radiation in such suchstructures.
6

Metallische Nanoantennen: Frequenzverdopplung und photochemische Reaktionen auf kleinen Skalen

Reichenbach, Philipp 11 April 2012 (has links) (PDF)
Diese Arbeit beinhaltet experimentelle und theoretische Untersuchungen der optischen Frequenzverdopplung (second-harmonic generation, kurz SHG) an metallischen Nanopartikeln. Frequenzverdopplung bedeutet, daß ein bei der Frequenz omega angeregtes Nanopartikel Strahlung der Frequenz 2*omega emittiert. Dieser Effekt tritt nicht nur in Materialien mit nichtzentrosymmetrischer Kristallstruktur, sondern auch an der Oberfläche von Metallen auf. Deshalb läßt er sich gut mit plasmonischen Feldüberhöhungen an metallischen Nanoantennen verbinden. Die Frequenzverdopplung wird an verschiedenen Nanostrukturen wie dreieckförmigen, stäbchenförmigen und vor allem kegelförmigen Nanopartikeln experimentell untersucht, welche aufgrund ihrer scharfen Spitzen starke SHG-Signale emittieren. Besonders die Kegel sind interessant: Bei Anregung mit einem fokussierten, radial polarisierten Strahl dominiert je nach Kegelgröße und Umgebungsmedium ein SHG-Signal entweder von der Spitze oder von der Bodenkante des Kegels. Diese an den Kegeln gemessenen Resultate werden durch theoretische Untersuchungen untermauert. In diesen Rechnungen werden die plasmonischen Feldüberhöhungen und die sich daraus ergebende Frequenzverdopplung für einen Kegel mit verschiedenen Parametern modelliert. An einem einzelnen Kegel gewonnene Resultate werden auch mit den Fällen eines kugelförmigen und eines stäbchenförmigen Partikels verglichen. Ein weiterer Gegenstand der theoretischen Untersuchungen ist die Superposition der zweiten Harmonischen von mehreren emittierenden Nanopartikeln zu einem Feldmaximum. Dabei wird eine kreisförmige Anordnung von 8 Nanostäbchen bzw. Nanokegeln von einer radial polarisierten Mode angeregt. Die Superposition der emittierten zweiten Harmonischen ergibt ein Feldmaximum innerhalb der Anordnung der Emitter. Durch eine Verkippung des anregenden Strahls kann dieser Fokus im Raum bewegt werden. Letztere Untersuchung ist insbesondere interessant im Hinblick auf lokalisierte photochemische Reaktionen, die durch das frequenzverdoppelte Licht von Nanopartikeln ausgelöst werden sollen. Mit chemischen Substanzen, die bei omega transparent, bei 2*omega aber photoreaktiv sind, wäre im Nahfeld dieser Nanoantennen eine starke Lokalisierung der Reaktion auf Bereiche kleiner als 100~nm möglich. Anhand von Photolacken und Polymermatrizen mit diesen Eigenschaften wird experimentell untersucht, ob frequenzverdoppeltes Licht überhaupt solche Reaktionen auslösen kann oder ob die photochemische Reaktionen überwiegend durch direkte Zwei-Photonen-Absorption des anregenden Lichts ausgelöst werden. Die Ergebnisse zeigen allerdings, daß die Zwei-Photonen-Absorption dominant ist. Durch die Zwei-Photonen-Absorption im Nahfeld von Partikeln ist aber dennoch eine vergleichbare Lokalisierung der Reaktion möglich. / This work includes experimental and theoretical investigations of second-harmonic generation (SHG) at metallic nanoparticles. SHG means that a nanoparticle that is excited at the frequency omega emits radiation at the frequency 2*omega. SHG does not only occur in materials with noncentrosymmetric structure, but also on metal surfaces. Hence, SHG can be combined well with plasmonic field enhancement at metallic nanoantennae. SHG is investigated experimentally at different nanostructures such as triangle-like, rod-like and especially cone-like nanoparticles. With their sharp tips these structures show a much stronger SHG signal than spherical nanoparticles. Especially the cones are interesting: Excited with a focused radially polarized beam, for different cone sizes and in different surrounding media either the signal from the tip or the signal from the bottom edge dominates. The measurement results from the cones are underpinned by theoretical investigations. In these calculations the plasmonic field enhancements and the resulting SHG are modeled for a cone with different parameters. The single-cone results are also compared with the cases of a spherical or rod-shaped particle. A further subject of the theoretical investigations is the superposition of the SHG radiation from a number of emitting nanoparticles to a field maximum. For that, a circular arrangement of 8 nanorods or nanocones is excited by a radially polarized beam. The superposition of the second-harmonic radiation fields yields a field maximum in the space between the emitters. A tilt of the exciting beam can move this focus in space. The latter item is of special interest concerning localised photochemical reactions induced by the second-harmonic light from nanoparticles. In the near field of these nanoantennae, a strong localisation of the reaction on regions smaller than 100 nm would be possible by using chemical substances being transparent at omega, but photoreactive at 2*omega. With photoresists and polymer matrices, experiments are carried out to investigate whether SHG light can trigger such reactions at all, or if these photochemical reactions are triggered predominantly by direct two-photon absorption of the exciting light. The results show that the two-photon absorption is the dominant process. Yet, through two-photon absorption in the near field of particles, the localisation of the reaction is still similar.
7

Photochemical Tuning of Surface Plasmon Resonances in Metal Nanoparticles

Härtling, Thomas 28 April 2009 (has links)
Illuminated metal nanoparticles (MNPs) feature collective electron oscillations (so-called localized surface plasmons or LSPs) which facilitate concentrating light-matter interactions to length scales below the diffraction limit. Part I of this book describes two applications of this confinement effect. Firstly, the use of single particles as optically active probes for scanning near-field optical microscopy is demonstrated. Secondly, fluorescence enhancement in the vicinity of a single MNP is described theoretically. This description focuses on how the particle diameter and the surrounding medium influence the enhancement. It turned out that in these two examples the optical signal levels can be improved by manipulating the spectral LSP resonance position of the particles. This finding triggered the search for a method allowing optical particle tuning. Part II of this thesis describes an approach which allows such a spectral LSP manipulation on the single-particle level. The method makes use of the optically induced reduction of metal salt complexes in solution, which leads to the deposition of thin layers of elemental metal onto single, intentionally addressed particles. The deposition process is monitored by optical LSP analysis, and thus the tuning of the optical particle properties is controlled in situ. With this technique, a manipulation of both the size and the shape of single nanoparticles was achieved. Initial experiences were gained by manipulating spherical and ellipsoidal gold particles, for which a red- and a blueshift of the LSP resonance was observed, respectively. The insights obtained from these experiments were then applied to tune the interparticle separation in nanoparticle pairs, i.e., to tune the resonance wavelength of these plasmonic nanoresonators. Subsequently, single resonators were used to reshape the fluorescence emission spectrum of organic molecules. Besides size and shape, also material parameters such as the surface roughness and the surface material composition influence the optical properties of MNPs. Both aspects are addressed using the example of rough platinum spheres and demonstrating the fabrication of bimetallic core-shell particles. As the material compositon of particles not only influences their optical, but for example also their catalytic or magnetic properties, photochemical metal deposition with in-situ optical LSP read-out builds a bridge to other fields of nanoscience. The presented method is a versatile tool for the fabrication and manipulation of nanostructures, and it is not limited to the field of plasmonics. / Metallische Nanopartikel (MNP) weisen unter Beleuchtung kollektive Schwingungen des Elektronengases auf (sogenannte lokalisierte Oberflächenplasmonen oder LOP). Die dadurch entstehende elektromagnetische Feldverteilung um die Partikel erlaubt die Konzentration von Licht-Materie-Wechselwirkungen auf einen Größenbereich unterhalb des Beugungslimits. In Teil I des vorliegenden Buches werden zwei Anwendungen dieses Konzentrationseffekts beschrieben. Zum einen wird die Verwendung eines einzelnen Partikels als Rastersonde für die optische Nahfeldmikroskopie gezeigt. Zum anderen wird die Fluoreszenzverstärkung in der unmittelbaren Umgebung eines Partikels untersucht. In letzterem Fall liegt der Fokus auf dem Einfluss der Partikelgröße und des Umgebungsmediums auf den Verstärkungsfaktor. Beide Untersuchungen zeigten, dass die Stärke der auftretenden optischen Signale von einer gezielten Steuerung der LOPResonanz profitieren kann. Diese Erkenntnis führte zur Entwicklung einer Methode, welche eine solche spektrale LOP-Steuerung erlaubt. Mit der in Teil II beschriebenen photochemischen Abscheidung von Metall auf einzelne Partikel wurde ein geeigneter Ansatz gefunden. Dabei wird die optisch induzierte Reduktion von Metallsalzkomplexen in einer Lösung ausgenutzt, um dünne Metallschichten auf gezielt ausgewählte Partikel aufzubringen. Der Abscheidungsprozess wird optisch über die Änderung der LOP-Resonanz des belichteten Partikels überwacht. Somit können dessen optische Eigenschaften gezielt in situ eingestellt werden. Mit der beschriebenen Technik können die Größe und die Form einzelner metallischer Partikel beeinflusst werden, was sich in einer Rot- bzw. Blauverschiebung der LOPResonanz äußert. Dieses Prinzip konnte zuerst an sphärischen und ellipsoidalen Goldpartikeln gezeigt werden. Die gewonnen Erkenntnisse wurden dann auf die gezielte Einstellung des Teilchenabstandes in Partikelpaaren übertragen, d. h., die Resonanzwellenlänge solcher plasmonischer Nanoresonatoren wurde gezielt manipuliert. Die Resonatoren konnten in einem zweiten Schritt zur Steuerung des Fluoreszenzspektrums organischer Moleküle eingesetzt werden. Neben Größe und Form spielen auch Materialparameter wie die Oberflächenrauigkeit und das Oberflächenmaterial eine wichtige Rolle für die optischen Eigenschaften der Partikel. Diese Parameter wurden am Beispiel von rauen Platinpartikeln sowie an bimetallischen Kern-Schale-Partikeln untersucht. Da das Oberflächenmaterial nicht nur die optischen, sondern z. B. auch katalytischen und magnetischen Eigenschaften der Partikel beeinflusst, verbindet die vorgestellte Methode die Plasmonik mit vielen anderen Bereichen der Nanotechnologie. Sie stellt eine vielseitige Technik zur Herstellung und Manipulation von Nanostrukturen dar, ohne dabei auf die Nanooptik limitiert zu sein.
8

Electromagnetic Manipulation of Individual Nano- and Microparticles

Kuhlicke, Alexander 17 November 2017 (has links)
Gegenstand der vorliegenden Dissertation ist die Untersuchung von einzelnen nano- und mikrometergroßen Partikeln, zum Verständnis und zur Entwicklung von neuartigen nanooptischen Elementen, wie Lichtquellen und Sensoren, sowie Strukturen zum Aufsammeln und Leiten von Licht. Neben der Charakterisierung stehen dabei verschiedene Methoden zur elektromagnetischen Manipulation im Vordergrund, die auf eine Kontrolle der Position oder der Geometrie der Partikel ausgerichtet sind. Die gezielten Manipulationen werden verwendet, um vorausgewählte Partikel zu isolieren, modifizieren und transferieren. Dadurch können Partikel zu komplexeren photonischen Systemen kombiniert werden, welche die Funktionalität der einzelnen Bestandteile übertreffen. Der Hauptteil der Arbeit behandelt Experimente mit freischwebenden Partikeln in linearen Paul-Fallen. Durch die räumliche Isolation im elektrodynamischen Quadrupolfeld können Partikel mit reduzierter Wechselwirkung untersucht werden. Neben der spektroskopischen Charakterisierung von optisch aktiven Partikeln (farbstoffdotierte Polystyrol-Nanokügelchen, Cluster aus Nanodiamanten mit Stickstoff-Fehlstellen-Zentren, Cluster aus kolloidalen Quantenpunkten) sowie optischen Resonatoren (plasmonische Silber-Nanodrähte, sphärische Siliziumdioxid-Mikroresonatoren) werden neu entwickelte Methoden zur Manipulation vorgestellt, mit denen sich individuelle Partikel freischwebend kombinieren und elektromagnetisch koppeln sowie aus der Falle auf optischen Fasern zur weiteren Untersuchung bzw. zur Funktionalisierung photonischer Strukturen ablegen lassen. In einem weiteren Teil der Arbeit wird eine Methode zur Manipulation der Geometrie von plasmonischen Nanopartikeln vorgestellt. Dabei werden einzelne Goldkugeln auf einem Deckglas mit einem fokussierten Laserstrahl zum Schmelzen gebracht und verformt. Durch die kontrollierte und reversible Veränderung der Symmetrie lassen sich die lokalisierten Oberflächenplasmonen des Partikels gezielt beeinflußen. / The topic of the present thesis is the investigation of single nano- and microsized particles for the understanding and design of novel nanooptical elements as light sources and sensors, as well as light collecting and guiding structures. In addition to particle characterization, the focus is on different methods for electromagnetic particle manipulation aimed at controlling the particle’s position or geometry. The specific manipulations are used for isolation, modification and transfer of preselected particles, enabling combination of particles into more complex photonic systems, which exceed the functionalities of the individual constituents. The main part of this work deals with experiments on levitated particles in linear Paul traps. Due to the spatial isolation in the electrodynamic quadrupole field, particles can be investigated with reduced environmental interaction. In addition to spectroscopic characterization of optically active particles (dye-doped polystyrene nanobeads, clusters of nanodiamonds with nitrogen vacancy defect centers, clusters of colloidal quantum dots) and particles with optical resonances (plasmonic silver nanowires, spherical silica microresonators) new manipulation methods are presented that enable assembly and electromagnetic coupling of individual, levitated particles as well as deposition of particles from the trap on optical fibers for further characterization or functionalization of photonic structures. In a further part of this work a method to manipulate the geometry of plasmonic nanoparticles is presented. Single gold nanospheres on a coverslip are melted and shaped with a focused laser beam. The localized surface plasmons can be influenced specifically by controlled and reversible changes of the particle symmetry.
9

Metallische Nanoantennen: Frequenzverdopplung und photochemische Reaktionen auf kleinen Skalen

Reichenbach, Philipp 02 February 2012 (has links)
Diese Arbeit beinhaltet experimentelle und theoretische Untersuchungen der optischen Frequenzverdopplung (second-harmonic generation, kurz SHG) an metallischen Nanopartikeln. Frequenzverdopplung bedeutet, daß ein bei der Frequenz omega angeregtes Nanopartikel Strahlung der Frequenz 2*omega emittiert. Dieser Effekt tritt nicht nur in Materialien mit nichtzentrosymmetrischer Kristallstruktur, sondern auch an der Oberfläche von Metallen auf. Deshalb läßt er sich gut mit plasmonischen Feldüberhöhungen an metallischen Nanoantennen verbinden. Die Frequenzverdopplung wird an verschiedenen Nanostrukturen wie dreieckförmigen, stäbchenförmigen und vor allem kegelförmigen Nanopartikeln experimentell untersucht, welche aufgrund ihrer scharfen Spitzen starke SHG-Signale emittieren. Besonders die Kegel sind interessant: Bei Anregung mit einem fokussierten, radial polarisierten Strahl dominiert je nach Kegelgröße und Umgebungsmedium ein SHG-Signal entweder von der Spitze oder von der Bodenkante des Kegels. Diese an den Kegeln gemessenen Resultate werden durch theoretische Untersuchungen untermauert. In diesen Rechnungen werden die plasmonischen Feldüberhöhungen und die sich daraus ergebende Frequenzverdopplung für einen Kegel mit verschiedenen Parametern modelliert. An einem einzelnen Kegel gewonnene Resultate werden auch mit den Fällen eines kugelförmigen und eines stäbchenförmigen Partikels verglichen. Ein weiterer Gegenstand der theoretischen Untersuchungen ist die Superposition der zweiten Harmonischen von mehreren emittierenden Nanopartikeln zu einem Feldmaximum. Dabei wird eine kreisförmige Anordnung von 8 Nanostäbchen bzw. Nanokegeln von einer radial polarisierten Mode angeregt. Die Superposition der emittierten zweiten Harmonischen ergibt ein Feldmaximum innerhalb der Anordnung der Emitter. Durch eine Verkippung des anregenden Strahls kann dieser Fokus im Raum bewegt werden. Letztere Untersuchung ist insbesondere interessant im Hinblick auf lokalisierte photochemische Reaktionen, die durch das frequenzverdoppelte Licht von Nanopartikeln ausgelöst werden sollen. Mit chemischen Substanzen, die bei omega transparent, bei 2*omega aber photoreaktiv sind, wäre im Nahfeld dieser Nanoantennen eine starke Lokalisierung der Reaktion auf Bereiche kleiner als 100~nm möglich. Anhand von Photolacken und Polymermatrizen mit diesen Eigenschaften wird experimentell untersucht, ob frequenzverdoppeltes Licht überhaupt solche Reaktionen auslösen kann oder ob die photochemische Reaktionen überwiegend durch direkte Zwei-Photonen-Absorption des anregenden Lichts ausgelöst werden. Die Ergebnisse zeigen allerdings, daß die Zwei-Photonen-Absorption dominant ist. Durch die Zwei-Photonen-Absorption im Nahfeld von Partikeln ist aber dennoch eine vergleichbare Lokalisierung der Reaktion möglich.:1. Einführung 1.1 Frequenzverdopplung an Nanopartikeln 1.2 Photochemisches Schreiben auf kleinen Längenskalen 2. Theoretische Grundlagen 2.1 Nichtlineare optische Effffekte zweiter Ordnung 2.2 Frequenzverdopplung in Metallen 2.3 Frequenzverdopplung bei metallischen Nanopartikeln 2.4 Überlagerung der Strahlung mehrerer frequenzverdoppelter Dipole 2.5 Core-Shell-Nanopartikel mit nichtzentrosymmetrischem Kern 3. Experimenteller Aufbau 3.1 Beleuchtung der Proben und Detektionspfad 3.2 Objektiv und Probenhalter 3.3 Realisierung der radial polarisierten Mode 4. Messungen der zweiten Harmonischen an Nanostrukturen 4.1 Einzelne kugel- und stäbchenförmige Goldnanopartikel 4.2 Nanodreiecke (Fischer-Pattern) 4.3 Nanokegel 4.4 Nanostäbchen-Teppiche 4.5 Zusammenfassung 5. Nichtlinear-optisches photochemisches Schreiben auf kleinen Längenskalen 5.1 Photochemische Reaktionen auf der Sub-100nm-Skala 5.2 Erste Versuche an Photolacken 5.3 Photochemisches Schreiben auf azobenzolhaltigen PMMA-Copolymerschichten 5.4 Photochemisches Schreiben auf azosulfonathaltigen PMMA-Copolymerschichten 5.5 Ausblick 6. Zusammenfassung und Ausblick Anhang A. Darstellung der radialen Mode und des z-polarisierten Fokus B. Mehode der multiplen Multipole (MMP) C. Präparation der Proben Literaturverzeichnis Abbildungsverzeichnis Verzeichnis der Tabellen Verwendete Abkürzungen Liste der Veröffffentlichungen Danksagung Erklärung / This work includes experimental and theoretical investigations of second-harmonic generation (SHG) at metallic nanoparticles. SHG means that a nanoparticle that is excited at the frequency omega emits radiation at the frequency 2*omega. SHG does not only occur in materials with noncentrosymmetric structure, but also on metal surfaces. Hence, SHG can be combined well with plasmonic field enhancement at metallic nanoantennae. SHG is investigated experimentally at different nanostructures such as triangle-like, rod-like and especially cone-like nanoparticles. With their sharp tips these structures show a much stronger SHG signal than spherical nanoparticles. Especially the cones are interesting: Excited with a focused radially polarized beam, for different cone sizes and in different surrounding media either the signal from the tip or the signal from the bottom edge dominates. The measurement results from the cones are underpinned by theoretical investigations. In these calculations the plasmonic field enhancements and the resulting SHG are modeled for a cone with different parameters. The single-cone results are also compared with the cases of a spherical or rod-shaped particle. A further subject of the theoretical investigations is the superposition of the SHG radiation from a number of emitting nanoparticles to a field maximum. For that, a circular arrangement of 8 nanorods or nanocones is excited by a radially polarized beam. The superposition of the second-harmonic radiation fields yields a field maximum in the space between the emitters. A tilt of the exciting beam can move this focus in space. The latter item is of special interest concerning localised photochemical reactions induced by the second-harmonic light from nanoparticles. In the near field of these nanoantennae, a strong localisation of the reaction on regions smaller than 100 nm would be possible by using chemical substances being transparent at omega, but photoreactive at 2*omega. With photoresists and polymer matrices, experiments are carried out to investigate whether SHG light can trigger such reactions at all, or if these photochemical reactions are triggered predominantly by direct two-photon absorption of the exciting light. The results show that the two-photon absorption is the dominant process. Yet, through two-photon absorption in the near field of particles, the localisation of the reaction is still similar.:1. Einführung 1.1 Frequenzverdopplung an Nanopartikeln 1.2 Photochemisches Schreiben auf kleinen Längenskalen 2. Theoretische Grundlagen 2.1 Nichtlineare optische Effffekte zweiter Ordnung 2.2 Frequenzverdopplung in Metallen 2.3 Frequenzverdopplung bei metallischen Nanopartikeln 2.4 Überlagerung der Strahlung mehrerer frequenzverdoppelter Dipole 2.5 Core-Shell-Nanopartikel mit nichtzentrosymmetrischem Kern 3. Experimenteller Aufbau 3.1 Beleuchtung der Proben und Detektionspfad 3.2 Objektiv und Probenhalter 3.3 Realisierung der radial polarisierten Mode 4. Messungen der zweiten Harmonischen an Nanostrukturen 4.1 Einzelne kugel- und stäbchenförmige Goldnanopartikel 4.2 Nanodreiecke (Fischer-Pattern) 4.3 Nanokegel 4.4 Nanostäbchen-Teppiche 4.5 Zusammenfassung 5. Nichtlinear-optisches photochemisches Schreiben auf kleinen Längenskalen 5.1 Photochemische Reaktionen auf der Sub-100nm-Skala 5.2 Erste Versuche an Photolacken 5.3 Photochemisches Schreiben auf azobenzolhaltigen PMMA-Copolymerschichten 5.4 Photochemisches Schreiben auf azosulfonathaltigen PMMA-Copolymerschichten 5.5 Ausblick 6. Zusammenfassung und Ausblick Anhang A. Darstellung der radialen Mode und des z-polarisierten Fokus B. Mehode der multiplen Multipole (MMP) C. Präparation der Proben Literaturverzeichnis Abbildungsverzeichnis Verzeichnis der Tabellen Verwendete Abkürzungen Liste der Veröffffentlichungen Danksagung Erklärung
10

Integrated photonic systems for single photon generation and quantum applications

Schröder, Tim 08 April 2013 (has links)
Im Rahmen der vorliegenden Dissertation wurden neuartige integrierte Einzelphotonenquellen (EPQ) und ihre Anwendung für die Quanteninformationsverarbeitung entwickelt und untersucht. Die Erzeugung von Einzelphotonen basiert auf einzelnen Defektzentren in nanometergroßen Diamantkristallen mit einzigartigen optischen Eigenschaften: Stabilität bei Zimmertemperatur ohne optisches Blinken. Diamantkristalle mit Größen bis unter 20nm wurden mit neuartigen „pick-and-place“ Techniken (z.B. mit einem Atomkraftmikroskop) in komplexe photonische Strukturen integriert. Zwei unterschiedliche Ansätze für die Realisierung der neuartigen EPQ wurden verfolgt. Beim ersten werden fluoreszierende Diamantkristalle in nano- und mikrometergroße Faser-basierte oder resonante Strukturen in einem „bottom-up“ Ansatz integriert, dadurch werden zusätzliche optische Komponenten überflüssig und das Gesamtsystem ultra-stabil und wartungsfrei. Der zweite Ansatz beruht auf einem Festkörperimmersionsmikroskop (FIM). Seine Festkörperimmersionslinse wirkt wie eine dielektrische Antenne für die Emission der Defektzentren. Es ermöglicht die höchsten bisher erreichten Photonenzählraten von Stickstoff-Fehlstellen von bis zu 2.4Mcts/s und Einsammeleffizienzen von bis zu 4.2%. Durch Anwendung des FIM bei cryogenen Temperaturen wurden neuartige Anwendungen und fundamentale Untersuchungen möglich, weil Photonenraten signifikant erhöht wurden. Die Bestimmung der spektralen Diffusionszeit eines einzelnen Defektzentrums (2.2µs) gab neue Erkenntnisse über die Ursachen von spektraler Diffusion. Spektrale Diffusion ist eine limitierende Eigenschaft für die Realisierung von Quanteninformationsanwendungen. Das Tisch-basierte FIM wurde außerdem als kompakte mobile EPQ mit Ausmaßen von nur 7x19x23cm^3 realisiert. Es wurde für ein Quantenkryptographie-Experiment implementiert, zum ersten Mal mit Siliziumdefektzentren. Des Weiteren wurde ein neues Konzept für die Erzeugung von infraroten EPQ entwickelt und realisiert. / The presented thesis covers the development and investigation of novel integrated single photon (SP) sources and their application for quantum information schemes. SP generation was based on single defect centers in diamond nanocrystals. Such defect centers offer unique optical properties as they are room temperature stable, non-blinking, and do not photo-bleach over time. The fluorescent nanocrystals are mechanically stable, their size down to 20nm enabled the development of novel nano-manipulation pick-and-place techniques, e.g., with an atomic force microscope, for integration into photonic structures. Two different approaches were pursued to realize novel SP sources. First, fluorescent diamond nanocrystals were integrated into nano- and micrometer scaled fiber devices and resonators, making them ultra-stable and maintenance free. Secondly, a solid immersion microscope (SIM) was developed. Its solid immersion lens acts as a dielectric antenna for the emission of defect centers, enabling the highest photon rates of up to 2.4Mcts/s and collection efficiencies of up to 4.2% from nitrogen vacancy defect centers achieved to date. Implementation of the SIM at cryogenic temperatures enabled novel applications and fundamental investigations due to increased photon rates. The determination of the spectral diffusion time of a single nitrogen vacancy defect center (2.2µs) gave new insights about the mechanisms causing spectral diffusion. Spectral diffusion is a limiting property for quantum information applications. The table-top SIM was integrated into a compact mobile SP system with dimension of only 7x19x23cm^3 while still maintaining record-high stable SP rates. This makes it interesting for various SP applications. First, a quantum key distribution scheme based on the BB84 protocol was implemented, for the first time also with silicon vacancy defect centers. Secondly, a conceptually novel scheme for the generation of infrared SPs was introduced and realized.

Page generated in 0.059 seconds