• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of DPA Fluorescence Enhancement.

Nolden, Raphael January 2007 (has links)
The processes involved in the enhancement of the fluorescence profile of dipicolinic acid (DPA) were measured and analysed, with particular emphasis on their potential application to the rapid identification of suspicious powders. The research was conducted in contribution to the anthrax detector currently under development at this department. Using the enhancement of fluorescence as a method of determining whether a sample contains spores shows great potential because DPA is not found in most powders that do not contain spores. Thus, its detection is a good indication of the presence of spores. The research presented in this thesis primarily focuses on the optimisation of measurement and enhancement techniques. Both DPA and milk powder (containing spores) were used as anthrax simulants. We found that 210 nm light was the optimal wavelength for the enhancement of DPA; however, as most light sources have a higher intensity at longer wavelengths, the use of 270 nm light may be more effective. At low concentrations, there is a linear relationship between detected fluorescence intensity and the quantity of DPA present. A linear response was also found to the enhancement-light exposure time.
2

Fluorescence Enhancement using One-dimensional Photonic Band Gap Multilayer Structure

Gao, Jian 21 August 2012 (has links)
No description available.
3

Photochemical Tuning of Surface Plasmon Resonances in Metal Nanoparticles / Photochemische Abstimmung von Oberflächenplasmon-Resonanzen in metallischen Nanopartikeln

Härtling, Thomas 07 July 2009 (has links) (PDF)
Illuminated metal nanoparticles (MNPs) feature collective electron oscillations (so-called localized surface plasmons or LSPs) which facilitate concentrating light-matter interactions to length scales below the diffraction limit. Part I of this book describes two applications of this confinement effect. Firstly, the use of single particles as optically active probes for scanning near-field optical microscopy is demonstrated. Secondly, fluorescence enhancement in the vicinity of a single MNP is described theoretically. This description focuses on how the particle diameter and the surrounding medium influence the enhancement. It turned out that in these two examples the optical signal levels can be improved by manipulating the spectral LSP resonance position of the particles. This finding triggered the search for a method allowing optical particle tuning. Part II of this thesis describes an approach which allows such a spectral LSP manipulation on the single-particle level. The method makes use of the optically induced reduction of metal salt complexes in solution, which leads to the deposition of thin layers of elemental metal onto single, intentionally addressed particles. The deposition process is monitored by optical LSP analysis, and thus the tuning of the optical particle properties is controlled in situ. With this technique, a manipulation of both the size and the shape of single nanoparticles was achieved. Initial experiences were gained by manipulating spherical and ellipsoidal gold particles, for which a red- and a blueshift of the LSP resonance was observed, respectively. The insights obtained from these experiments were then applied to tune the interparticle separation in nanoparticle pairs, i.e., to tune the resonance wavelength of these plasmonic nanoresonators. Subsequently, single resonators were used to reshape the fluorescence emission spectrum of organic molecules. Besides size and shape, also material parameters such as the surface roughness and the surface material composition influence the optical properties of MNPs. Both aspects are addressed using the example of rough platinum spheres and demonstrating the fabrication of bimetallic core-shell particles. As the material compositon of particles not only influences their optical, but for example also their catalytic or magnetic properties, photochemical metal deposition with in-situ optical LSP read-out builds a bridge to other fields of nanoscience. The presented method is a versatile tool for the fabrication and manipulation of nanostructures, and it is not limited to the field of plasmonics. / Metallische Nanopartikel (MNP) weisen unter Beleuchtung kollektive Schwingungen des Elektronengases auf (sogenannte lokalisierte Oberflächenplasmonen oder LOP). Die dadurch entstehende elektromagnetische Feldverteilung um die Partikel erlaubt die Konzentration von Licht-Materie-Wechselwirkungen auf einen Größenbereich unterhalb des Beugungslimits. In Teil I des vorliegenden Buches werden zwei Anwendungen dieses Konzentrationseffekts beschrieben. Zum einen wird die Verwendung eines einzelnen Partikels als Rastersonde für die optische Nahfeldmikroskopie gezeigt. Zum anderen wird die Fluoreszenzverstärkung in der unmittelbaren Umgebung eines Partikels untersucht. In letzterem Fall liegt der Fokus auf dem Einfluss der Partikelgröße und des Umgebungsmediums auf den Verstärkungsfaktor. Beide Untersuchungen zeigten, dass die Stärke der auftretenden optischen Signale von einer gezielten Steuerung der LOPResonanz profitieren kann. Diese Erkenntnis führte zur Entwicklung einer Methode, welche eine solche spektrale LOP-Steuerung erlaubt. Mit der in Teil II beschriebenen photochemischen Abscheidung von Metall auf einzelne Partikel wurde ein geeigneter Ansatz gefunden. Dabei wird die optisch induzierte Reduktion von Metallsalzkomplexen in einer Lösung ausgenutzt, um dünne Metallschichten auf gezielt ausgewählte Partikel aufzubringen. Der Abscheidungsprozess wird optisch über die Änderung der LOP-Resonanz des belichteten Partikels überwacht. Somit können dessen optische Eigenschaften gezielt in situ eingestellt werden. Mit der beschriebenen Technik können die Größe und die Form einzelner metallischer Partikel beeinflusst werden, was sich in einer Rot- bzw. Blauverschiebung der LOPResonanz äußert. Dieses Prinzip konnte zuerst an sphärischen und ellipsoidalen Goldpartikeln gezeigt werden. Die gewonnen Erkenntnisse wurden dann auf die gezielte Einstellung des Teilchenabstandes in Partikelpaaren übertragen, d. h., die Resonanzwellenlänge solcher plasmonischer Nanoresonatoren wurde gezielt manipuliert. Die Resonatoren konnten in einem zweiten Schritt zur Steuerung des Fluoreszenzspektrums organischer Moleküle eingesetzt werden. Neben Größe und Form spielen auch Materialparameter wie die Oberflächenrauigkeit und das Oberflächenmaterial eine wichtige Rolle für die optischen Eigenschaften der Partikel. Diese Parameter wurden am Beispiel von rauen Platinpartikeln sowie an bimetallischen Kern-Schale-Partikeln untersucht. Da das Oberflächenmaterial nicht nur die optischen, sondern z. B. auch katalytischen und magnetischen Eigenschaften der Partikel beeinflusst, verbindet die vorgestellte Methode die Plasmonik mit vielen anderen Bereichen der Nanotechnologie. Sie stellt eine vielseitige Technik zur Herstellung und Manipulation von Nanostrukturen dar, ohne dabei auf die Nanooptik limitiert zu sein.
4

Molecular Probes for Biologically Important Molecules: A Study of Thiourea, Hydroxyl radical, Peroxynitrite and Hypochlorous acid

Chakraborty, Sourav 14 May 2010 (has links)
Numerous chemical species are important to the health of biological systems. Some species can be beneficial at low doses and harmful at high doses. Other species are highly reactive and trigger serious cell damage. Improved methods to detect the presence and activity of such species are needed. In this work, several biologically important species were studied using appropriate analytical techniques. Fluoride is an important species in human physiology. It strengthens teeth and gives protection against dental caries. However, elevated concentrations of fluoride in the body can lead to health problems such as dental and skeletal fluorosis. Reported fluoride sensors used fluorescence quenching methods in determining fluoride concentration. Our study explored synthesis and characterization of 1,8-bis(phenylthioureido) naphthalene (compound 1) as a fluoride sensing molecule. Compound 1 showed a remarkable 40 fold enhancement in fluorescence with 5 eq of fluoride addition. Compound 1 also showed possibility of visual colorimetric sensing with fluoride. Free radical mediated oxidations of biomolecules are responsible for different pathological conditions in the human body. Superoxide is generated in cells and tissues during oxidative burst. Moderately reactive superoxide is converted to peroxyl, alkoxyl and hydroxyl radicals by various enzymatic, chemical, and biochemical processes. Hydroxyl radical imparts rapid, non specific oxidative damage to biomolecules such as proteins and lipids. Superoxide also reacts with nitric oxide in cells to yield peroxynitrite, which is highly reactive and damages biomolecules. Both hydroxyl radical and peroxynitrite readily react with amino acids containing aromatic side chains. Low density lipoprotein (LDL) carries cholesterol in the human body. Elevated concentration of LDL is a potential risk factor for atherosclerosis. Previous research drew a strong correlation between oxidized low density lipoprotein (ox-LDL) and plaque formation in the arterial wall. More importantly, oxidative damage causes structural changes to the LDL protein (apo B-100) which might facilitate the uptake of LDL by macrophages. In this study LDL was exposed to various concentrations of hydroxyl radical peroxynitrite and hypochlorite. Thereafter oxidized amino acid residues in apo B-100 were mapped by LC-MS/MS methods. We found widely distributed oxidative modifications in the apo B-100 amino acid sequence.
5

Photochemical Tuning of Surface Plasmon Resonances in Metal Nanoparticles

Härtling, Thomas 28 April 2009 (has links)
Illuminated metal nanoparticles (MNPs) feature collective electron oscillations (so-called localized surface plasmons or LSPs) which facilitate concentrating light-matter interactions to length scales below the diffraction limit. Part I of this book describes two applications of this confinement effect. Firstly, the use of single particles as optically active probes for scanning near-field optical microscopy is demonstrated. Secondly, fluorescence enhancement in the vicinity of a single MNP is described theoretically. This description focuses on how the particle diameter and the surrounding medium influence the enhancement. It turned out that in these two examples the optical signal levels can be improved by manipulating the spectral LSP resonance position of the particles. This finding triggered the search for a method allowing optical particle tuning. Part II of this thesis describes an approach which allows such a spectral LSP manipulation on the single-particle level. The method makes use of the optically induced reduction of metal salt complexes in solution, which leads to the deposition of thin layers of elemental metal onto single, intentionally addressed particles. The deposition process is monitored by optical LSP analysis, and thus the tuning of the optical particle properties is controlled in situ. With this technique, a manipulation of both the size and the shape of single nanoparticles was achieved. Initial experiences were gained by manipulating spherical and ellipsoidal gold particles, for which a red- and a blueshift of the LSP resonance was observed, respectively. The insights obtained from these experiments were then applied to tune the interparticle separation in nanoparticle pairs, i.e., to tune the resonance wavelength of these plasmonic nanoresonators. Subsequently, single resonators were used to reshape the fluorescence emission spectrum of organic molecules. Besides size and shape, also material parameters such as the surface roughness and the surface material composition influence the optical properties of MNPs. Both aspects are addressed using the example of rough platinum spheres and demonstrating the fabrication of bimetallic core-shell particles. As the material compositon of particles not only influences their optical, but for example also their catalytic or magnetic properties, photochemical metal deposition with in-situ optical LSP read-out builds a bridge to other fields of nanoscience. The presented method is a versatile tool for the fabrication and manipulation of nanostructures, and it is not limited to the field of plasmonics. / Metallische Nanopartikel (MNP) weisen unter Beleuchtung kollektive Schwingungen des Elektronengases auf (sogenannte lokalisierte Oberflächenplasmonen oder LOP). Die dadurch entstehende elektromagnetische Feldverteilung um die Partikel erlaubt die Konzentration von Licht-Materie-Wechselwirkungen auf einen Größenbereich unterhalb des Beugungslimits. In Teil I des vorliegenden Buches werden zwei Anwendungen dieses Konzentrationseffekts beschrieben. Zum einen wird die Verwendung eines einzelnen Partikels als Rastersonde für die optische Nahfeldmikroskopie gezeigt. Zum anderen wird die Fluoreszenzverstärkung in der unmittelbaren Umgebung eines Partikels untersucht. In letzterem Fall liegt der Fokus auf dem Einfluss der Partikelgröße und des Umgebungsmediums auf den Verstärkungsfaktor. Beide Untersuchungen zeigten, dass die Stärke der auftretenden optischen Signale von einer gezielten Steuerung der LOPResonanz profitieren kann. Diese Erkenntnis führte zur Entwicklung einer Methode, welche eine solche spektrale LOP-Steuerung erlaubt. Mit der in Teil II beschriebenen photochemischen Abscheidung von Metall auf einzelne Partikel wurde ein geeigneter Ansatz gefunden. Dabei wird die optisch induzierte Reduktion von Metallsalzkomplexen in einer Lösung ausgenutzt, um dünne Metallschichten auf gezielt ausgewählte Partikel aufzubringen. Der Abscheidungsprozess wird optisch über die Änderung der LOP-Resonanz des belichteten Partikels überwacht. Somit können dessen optische Eigenschaften gezielt in situ eingestellt werden. Mit der beschriebenen Technik können die Größe und die Form einzelner metallischer Partikel beeinflusst werden, was sich in einer Rot- bzw. Blauverschiebung der LOPResonanz äußert. Dieses Prinzip konnte zuerst an sphärischen und ellipsoidalen Goldpartikeln gezeigt werden. Die gewonnen Erkenntnisse wurden dann auf die gezielte Einstellung des Teilchenabstandes in Partikelpaaren übertragen, d. h., die Resonanzwellenlänge solcher plasmonischer Nanoresonatoren wurde gezielt manipuliert. Die Resonatoren konnten in einem zweiten Schritt zur Steuerung des Fluoreszenzspektrums organischer Moleküle eingesetzt werden. Neben Größe und Form spielen auch Materialparameter wie die Oberflächenrauigkeit und das Oberflächenmaterial eine wichtige Rolle für die optischen Eigenschaften der Partikel. Diese Parameter wurden am Beispiel von rauen Platinpartikeln sowie an bimetallischen Kern-Schale-Partikeln untersucht. Da das Oberflächenmaterial nicht nur die optischen, sondern z. B. auch katalytischen und magnetischen Eigenschaften der Partikel beeinflusst, verbindet die vorgestellte Methode die Plasmonik mit vielen anderen Bereichen der Nanotechnologie. Sie stellt eine vielseitige Technik zur Herstellung und Manipulation von Nanostrukturen dar, ohne dabei auf die Nanooptik limitiert zu sein.

Page generated in 0.1116 seconds