Return to search

The 14N(p,γ)15O reaction studied at low and high beam energy

The CNO cycle consists of a set of nuclear reactions that convert hydrogen into helium and releases energy in stars. The cycle contributes less than 1% to our Sun's luminosity, but it is responsible for detectable neutrino fluxes that can bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision.
The 14N(p,γ)15O is the slowest reaction in the CNO cycle and estabilishes its rate. The experimental study has been performed both at the LUNA 400 kV accelerator deep underground in the Gran Sasso mountain in Italy and at a 3 MV Tandetron in the Helmholtz-Zentrum Dresden-Rossendorf. A proton beam was sent on solid TiN targets and the prompt photons were collected by a composite HPGe detector (at LUNA) or by up to four HPGe detectors (Dresden).
The obtained results improve the fit of the excitation function in the R-matrix framework, that is used to extrapolate the S-factor at the very low astrophysical energies. In addition, the strength of two resonances at Ep = 430 and 897 keV of the 15N(p,αγ)12C reaction were measured, improving the precision for hydrogen depth profiling.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-87464
Date04 June 2012
CreatorsMarta, Michele
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Eckart Grosse, Dr. Daniel Bemmerer, Prof. Dr. Eckart Grosse, Dr. Zsölt Fülöp
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0026 seconds