Return to search

Titanium-45 as a candidate for PET imaging: production, processing & applications

Introduction
The 80kD glycoprotein transferrin (TF) and its related receptor (TFR1) play a major role in the recruitment by cancer cells of factors for their multiplication, adhesion, invasion and metastatic potential. Though primarily designed to bind iron and then be internalised into cells with its receptor, TF can also bind most transition metals such as Co, Cr, Mn, Zr, Ni, Cu, V, In & Ga. Under certain conditions TF binds Ti (IV) even more tightly than it does Fe and that this occurs at the N-lobe (as distinct from C) of apoTF. Further, under physiological conditions the species Fe(C)Ti(N)-TF may provide the route for Ti entry into cells via TFR1 (1). Thus, the radiometal PET reporter isotope 45Ti with an ‘intermediate’ (~hrs) half-life suited to tracking cell-focused biological mechanisms is an attractive option for elucidating cellular mechanisms involving TF binding and internalisation, at least in (preclinical) animal models.
45Ti (T½ = 3.08 hr; + branching ratio = 85 %; mean β+ energy = 439keV, no significant dose-conferring non-511keV γ-emissions) was produced using the reaction 45Sc(p,n)45Ti by irradiating (monoisotopic) scandium discs with an energy-degraded proton beam produced by an 18MeV isochronous medical cyclotron. Separation and purification was achieved with an hydroxylamine hydrochloride functionalised resin. Comparative microPET imaging was performed in an immunodeficient mouse model, measuring biodistributions of the radiolabels 45Ti-oxalate and 45Ti-human-TF (45Ti-h-TF), out to 6hr post-injection.

Materials and Methods
High purity 15mm diameter scandium disc foils (99.5%, Goodfellow, UK) each thickness 0.100 ± 0.005 mm (55 mg) were loaded into an in-house constructed solid-targetry system mounted on a 300mm external beam line utilising helium-gas and chilled water to cool the target body (2). The proton beam was degraded to 11.7 MeV using a graphite disc integrated into the graphite collimator. This energy abolishes the competing ‘contaminant’ reactions 45Sc(p,n+p)44Sc and 45Sc(p,2n)44Ti. Beam current was measured using the well documented 65Cu(p,n)65Zn reaction. Calculations showed that the chosen energy is close to the optimal primary energy (~12 MeV) for maximising the (thin-target) yield from a 0.100 mm thick target.
For separation of Ti from the Sc target two methods were examined; (i) ion exchange column separation using 2000 mg AG 50W-X8 resin conditioned with 10mL 9M HCl. Disc is dissolved in 1 mL of 9M HCl, which at completion of reaction is pipetted into column. Successive 1 mL volumes of 9M HCl are added, and subsequent elutions collected. (ii) Following Gagnon et al., (3) a method employing hydroxylamine hydro-chloride functionalised resin (’hydroxamate method’) was applied, similar to its use in our hands for purification and separation of 89Zr (2) following its original description for 89Zr by Holland et al., (4). Disc dissolved in 2mL 6M HCl, then diluted to 2M. Elute through column to waste fraction 1 (w1 – see FIG. 1). Then elute 6 mL of 2M HCl through column to w2, followed by 6 mL of traceSELECT H2O to w3. Finally, elute Ti into successive 1 mL product fractions (p1, 2 etc.) using 5 mL of 1M oxalic acid. This procedure takes approximate 1 hr. 45Ti in elution vials was measured using γ-spectroscopy. Sc in the same vials was determined later using ICP-MS.

Results
A typical production run using a beam current of 40 μA for 60min on a 0.100mm-thick disc produced an activity of 1.83 GBq. Radionuclidic analysis of an irradiated disc using calibrated cryo-HPGe γ-spectroscopy revealed T½ = 2.97–3.19 hr (95% CI) for 45Ti, and with contaminant 44Sc < 0.19 %, with no other isotopes detected.
Despite systematic adjustments to column conditions satisfactory chemical separation was not achieved using the ion exchange column method (i), despite previous reports of its success (5). Typical results of separation using the successful hydroxamate method (ii) are shown on the FIGURE 1.
It is seen that significant portion of 45Ti is lost in the initial washing steps leading to waste collection. N = 4 replicate experiments showed a variation (SD) of 10 % of the mean in each elu-tion fraction. Subsequent ICP-MS of the same elutions for (cold) Sc showed approximately 80 % by mass appeared in w1 and 20 % in w2, with negligible total mass (total fraction ~1/6000) of Sc in product (p1–4) vials. However, the FIG. 1 shows that a total of only 30% of the original activity of 45Ti (corrected to EOB) is available in the product vials, with the vial of highest specific activity (p1) containing 14 %. However, using a stack of 2×0.100mm thick Sc discs as a target yields isotope of adequate specific activity with-out need for concentration, for subsequent labelling and small-animal imaging purposes.
In a ‘proof-of-principle’ experiment, two groups of healthy Balb/c-nu/nu female adult mice were administered with 45Ti radiotracers. The first group (N = 3) received approximately 20 MBq IP of 45Ti-oxalate buffered to pH = 7.0, and under-went microPET/CT imaging (Super Argus PET, Sedecal, Spain) out to 6hr post-injection, plus biodistribution analysis of radioactivity by dis-section at sacrifice (6hr). The second group (N = 3) received approximately 20 MBq IP of 45Ti-h-TF and were also studied to 6hr post-injection, followed by radioactive analysis after dissection at sacrifice. Organ and tissue biodistributions of the two groups at 6hr were similar but with 45Ti-oxalate showing slightly greater affinity for bone. Biodistribution by dissection results broadly confirmed the findings from PET images. However, TLC results suggested that similarity of radiolabel biodistributions of the two groups may be due to contamination of the TF radiolabel with non-conjugated Ti at time of injection. An alternative explanation is dechelation in vivo of 45Ti from 45Ti-h-TF.

Conclusion
Despite significant loss of 45Ti to the waste fractions of the separation process (total 53 %, corrected to EOB), 45Ti of acceptable specific activity and high radionuclidic purity has been produced from the reaction 45Sc(p,n)45Ti, with separation and purification of the product by hydroxamate column chemistry, confirming an earlier report. Though microPET in vivo imaging using 45Ti-based radiolabels was shown to be feasible, the similarity in the results for the label 45Ti-h-TF compared with ‘raw’ 45Ti-oxalate suggests further investigations. These may include a direct comparison of in vivo 45Ti-h-TF small-animal imaging plus post-dissection biodistribution with the same procedures using 89Zr labelled h-apotransferrin (6).

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:d120-qucosa-166284
Date19 May 2015
CreatorsPrice, R. I., Sheil, R. W., Scharli, R. K., Chan, S., Gibbons, P., Jeffery, C., Morandeau, L.
ContributorsRadiopharmaceutical Production & Development (RAPID) Laboratory, Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia,, Helmholtz-Zentrum Dresden - Rossendorf,
PublisherHelmholtz-Zentrum Dresden - Rossendorf
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject
Formatapplication/pdf
SourceWTTC15

Page generated in 0.0027 seconds