Return to search

Fluorescence imaging microscopy studies on single molecule diffusion and photophysical dynamics

Within the last years, e.g. by investigating the fluorescence of single molecules in biological cells, remarkable progress has been made in cell biology extending conventional ensemble techniques concerning temporal / spatial resolution and the detection of particle subpopulations [82]. In addition to employing single fluorophores as "molecular beacons" to determine the position of biomolecules, single molecule fluorescence studies allow to access the photophysical dynamics of genetically encoded fluorescent proteins itself. However, in order to gain statistically consistent results, e.g. on the mobility behavior or the photophysical properties, the fluorescence image sequences have to be analyzed in a preferentially automated and calibrated (non-biased) way. In this thesis, a single molecule fluorescence optical setup was developed and calibrated and experimental biological in-vitro systems were adapted to the needs of single molecule imaging. Based on the fluorescence image sequences obtained, an automated analysis algorithm was developed, characterized and its limits for reliable quantitative data analysis were determined. For lipid marker molecules diffusing in an artifcial lipid membrane, the optimum way of the single molecule trajectory analysis of the image sequences was explored. Furthermore, effects of all relevant artifacts (specifically low signal-to-noise ratio, finite acquisition time and high spot density, in combination with photobleaching) on the recovered diffusion coefficients were carefully studied. The performance of the method was demonstrated in two series of experiments. In one series, the diffusion of a fluorescent lipid probe in artificial lipid bilayer membranes of giant unilamellar vesicles was investigated. In another series of experiments, the photoconversion and photobleaching behavior of the fluorescent protein Kaede-GFP was characterized and protein subpopulations were identified.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1175001255490-38090
Date27 March 2007
CreatorsSchäfer, Stephan
ContributorsTechnische Universität Dresden, Physik, Technische Universität Dresden, Institut für Biophysik, Prof. Dr. Petra Schwille, Prof. Dr. Petra Schwille, Prof. Dr. Lukas Eng, Prof. Dr. Ulrich Kubitscheck
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0023 seconds