Return to search

Control of transmission system power flows

Power flow (PF) control can increase the utilization of the transmission system and connect lower cost generation with load. While PF controllers have demonstrated the ability to realize dynamic PF control for more than 25 years, PF control has been sparsely implemented.

This research re-examines PF control in light of the recent development of fractionally-rated PF controllers and the incremental power flow (IPF) control concept. IPF control is the transfer of an incremental quantity of power from a specified source bus to specified destination bus along a specified path without influencing power flows on circuits outside of the path.

The objectives of the research are to develop power system operation and planning methods compatible with IPF control, test the technical viability of IPF control, develop transmission planning frameworks leveraging PF and IPF control, develop power system operation and planning tools compatible with PF control, and quantify the impacts of PF and IPF control on multi-decade transmission planning.

The results suggest that planning and operation of the power system are feasible with PF controllers and may lead to cost savings. The proposed planning frameworks may incent transmission investment and be compatible with the existing transmission planning process. If the results of the planning tool demonstration scale to the national level, the annual savings in electricity expenditures would be $13 billion per year (2010$). The proposed incremental packetized energy concept may facilitate a reduction in the environmental impact of energy consumption and lead to additional cost savings.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50392
Date13 January 2014
CreatorsKreikebaum, Frank Karl
ContributorsBegovic, Miroslav
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0026 seconds