Die Charakterisierung der Protein-Nanopartikel-Wechselwirkungen in komplexen biomolekularen Systemen wie einer lebenden Zelle ist für die Pharma-, Medizin- und Umweltforschung von entscheidender Bedeutung. In solchen biomolekularen Systemen adsorbieren Proteine leicht auf der Oberfläche von Nanopartikeln, die die Proteinkorona bilden. Diese Arbeit konzentriert sich auf die Charakterisierung der Proteinkorona in lebenden Zellen, wobei verschiedene analytische Ansätze kombiniert werden. Experimente mit oberflächenverstärkter Raman-Streuung (SERS) an reinen Proteinlösungen zeigten die Konzentrationsabhängigkeit der Protein-Gold-Nanopartikel-Wechselwirkungen, die zu unterschiedlichen SERS-Spektren führten und ermöglichten die Bestimmung von Proteinsegmenten, die an Citrat-stabilisierte Gold-Nanopartikel binden. In SERS-Experimenten mit lebenden Zellen wurde die Anwesenheit von Proteinfragmenten in der innersten Schicht der Proteinkorona, die als harte Proteinkorona bezeichnet wird, festgestellt. Eine analytische Methode, die Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese und Hochleistungs-Flüssigchromatographie-gekoppelte Elektrospray-Ionisations-Massenspektrometrie kombiniert, wurde entwickelt, um die Bestandteile der Hartproteinkorona zu identifizieren. Die Proteomics-, SERS- und Cryo-Soft-X-Ray-Nanotomographiedaten, wobei letztere Informationen über die dreidimensionale Ultrastruktur der Zelle liefern, zeigen den Aufnahmemechanismus, die Verarbeitung, die Akkumulationsstelle, die molekulare Umgebung und die induzierten zellulären Reaktionen internalisierter Goldnanopartikel. Diese Arbeit validiert die Verwendung von SERS bei der Analyse der Proteinkorona in der Lösung von Modellproteinen und in lebenden Zellen und präsentiert eine geeignete Methode zur Analyse der unveränderten harten Proteinkorona, die in lebenden Zellen gebildet wird. / The characterization of the protein-nanoparticle interactions in complex biomolecular systems such as a living cell is vital for pharmaceutical, medical, and environmental research fields. In such biomolecular systems, proteins readily adsorb on the surface of nanoparticles forming the protein corona. This thesis focuses on the characterization of the protein corona in living cells combining different analytical approaches. Surface-enhanced Raman scattering (SERS) experiments on pure protein solutions revealed the concentration dependence of the protein-gold nanoparticle interactions resulting in different SERS spectra, and allowed for the determination of protein segments binding to citrate-stabilized gold nanoparticles. In live cell SERS experiments, the presence of protein fragments in the innermost layer of the protein corona, called the hard protein corona, was revealed. An analytical method combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography-coupled electrospray ionization mass spectrometry was developed to identify the constituents of the hard protein corona. The proteomics, SERS, and cryo soft X-ray nanotomography data, the latter providing information of the three dimensional ultrastructure of the cell, reveal the uptake mechanism, processing, accumulation site, molecular environment, and the induced cellular responses of internalized gold nanoparticles. This work validates the use of SERS in the analysis of the protein corona in the solution of model proteins and in living cells, and presents a suitable method for the analysis of the unaltered hard protein corona formed in living cells.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/22428 |
Date | 17 August 2020 |
Creators | Szekeres, Gergő Péter |
Contributors | Kneipp, Janina, Montes-Bayón, Maria, Bettmer, Jörg |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Relation | 10.3389/fchem.2019.00030, 10.1039/C8AN01321G, 10.1016/j.jprot.2019.103582, 10.1021/acs.analchem.0c01404, 10.1039/D0NR03581E |
Page generated in 0.0023 seconds