Return to search

Coiled-Coil-Templated Acyl Transfer Reactions on the Surface of Living Cells

Fluoreszenzmarkierungstechniken für lebende Zellen ermöglichen es Biologen, einen Blick in eine komplexe biologische Umgebung zu werfen und Informationen über ein bestimmtes Ziel in einer nahezu natürlichen Umgebung zu erhalten. Dank der konzertierten Bemühungen der wissenschaftlichen Gemeinschaft gibt es eine Fülle von kommerziell erhältlichen, genetisch kodierbaren Markern und Reportern für die Fluoreszenzmikroskopie. Allerdings gibt es nur wenige Lebendzellmethoden, die eine direkte Konjugation von Nukleinsäuren mit Proteinen erlauben, obwohl es robuste DNA-Technologien gibt, die mit Oligo-Antikörper-Konjugaten auf Zelloberflächen durchgeführt werden. Ein weiterer, oft einschränkender Aspekt der Markierung ist die Fähigkeit, Ziele selektiv zu multiplexen. In dieser Studie wurde eine Methode der Tag-Probe-Markierung entwickelt, die eine selektive, gleichzeitige Markierung von zwei verschiedenen Zielen mit zwei Peptid-Nukleinsäure-Strängen (PNA) ermöglicht. Diese Methode verwendet ein Paar von Coiled-Coil-Peptiden, um die Konjugation einer PNA-Gruppe an ein Zielprotein zu steuern, das ein Peptid-Tag exprimiert. Die Verwendung orthogonaler Coiled-Coils ermöglicht Multiplexing.
Die Markierung von synthetischen Tag-Peptiden, die mittels Flüssigchromatographie analysiert wurden, hat gezeigt, dass der orthogonale duale Transfer von PNA selektiv, quantitativ und schnell ist. Die PNA-Konjugation von exemplarischen Membranrezeptoren, gefolgt von der Hybridisierung mit komplementären Fluorophor-DNAs, ermöglichte eine unkomplizierte Visualisierung von dualen Rezeptoren in lebenden Zellen. Durch den Einsatz einfacher molekularer Hilfsmittel, die die Grundlage der DNA-Nanotechnologie bilden, konnte durch die Rekrutierung mehrerer DNAs eine zunehmend hellere Markierung erreicht werden und die löschbare Oberflächenmarkierung ermöglichte eine quantitative Untersuchung der Rezeptorinternalisierung. / Live-cell fluorescent labelling techniques allow biologists to glimpse into a complex biological environment and derive information about a specific target in a near-native environment. Thanks to a concerted effort from the scientific community, a plethora of commercially available, genetically encodable tags and reporters for fluorescence microscopy exist. However, few live-cell methods allow direct conjugation of nucleic acids with proteins despite the robust DNA technologies carried out on cell surfaces using oligo-antibody conjugates. Another aspect of labelling which is often limiting is the ability to selectively multiplex targets. In this study, a method of tag–probe labelling was developed that accomplishes selective, simultaneous labelling of two distinct targets with two peptide nucleic acid (PNA) strands. The technique uses a pair of coiled-coil peptides to guide conjugation of a PNA group to a target protein expressing a peptide tag and using orthogonal coiled-coil enables multiplexing.
Initially, the labelling of synthetic tag-peptides analysed by liquid chromatography revealed the orthogonal dual transfer of PNA to be selective, quantitative, and rapid. PNA conjugation of exemplar membrane receptors followed by hybridization with complementary fluorophore-DNAs achieved straightforward live-cell dual receptor visualization. Finally, using simple molecular tools that form the basis of DNA nanotechnology, recruitment of multiple DNAs facilitated progressively brighter labelling, and erasable surface labelling allowed quantitative study of receptor internalisation.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/27111
Date24 April 2023
CreatorsGavins, Georgina
ContributorsSeitz, Oliver, Beck-Sickinger, Annette, Arenz, Christoph
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/
Relation10.1039/D1CB00126D, 10.1038/s41557-020-00584-z

Page generated in 0.0047 seconds