Return to search

Vocaliza??es subaqu?ticas e fen?menos n?o lineares em focas ant?rticas

Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-11-08T17:53:03Z
No. of bitstreams: 1
2016 - Israel de S? Maciel.pdf: 3184590 bytes, checksum: 1d079e88bc7d2ff9256dc558436b7cd3 (MD5) / Made available in DSpace on 2017-11-08T17:53:03Z (GMT). No. of bitstreams: 1
2016 - Israel de S? Maciel.pdf: 3184590 bytes, checksum: 1d079e88bc7d2ff9256dc558436b7cd3 (MD5)
Previous issue date: 2016-02-02 / CAPES / Pinnipeds produce a variety of underwater sounds that are often related to reproductive activities and social interactions. In addition, several species of seals provide evidence of vocalizations with geographical and individual variations. Most of bioacoustics researches with seals studied the terrestrial environment repertoire using linear analysis. However, some characteristics of vocalizations can not be explained with linear analysis only or taking into account only one part of the animal's life. The nonlinear phenomena (NLP) present in vocalizations (sideband, harmonic, sub-harmonic, biphonation, jump of frequency and deterministic chaos) are still poorly studied. Given the importance of this phenomena in vocalizations to individual recognition, especially in social mammals, was studied the underwater vocalizations of Antarctic seals in order to know their vocal repertoire and their NLP as well as discuss their possible function. In 2013, Brazilian Navy conducted acoustic recordings on Half Moon Island. In this collection were recorded 128GB of sound files between 12th and 30th of November. A total of 18 days of uninterrupted collections, producing 7,448 files of 3 minutes each. These recordings were taken at the presence of seals to Lobodontini Tribe. A total of 15 types of vocalizations were found in the period between days 12-16/November. A pattern in the vocalizations types L, K and E, arranged in sequence K, L and E, respectively, was observed in all seal recordings. All files presented biphonations, jumps of frequency, harmonics, sidebands and chaos in nine types of vocalizations (A, C, E, F, K, L, M, N and O). The nonlinearities were abundant on all files, being present in 75.56% (N = 1829) of vocalizations. Deterministic chaos was most common, present in 53.86% of non-linear features and 43.08% of vocalizations in general. Taking into account only the tonal vocalizations, 88.85% of vocalizations were nonlinear. The repetition of the KLE pattern also displays a recognition function. The NLP, mainly deterministic chaos, had high incidence in the studied vocalizations indicating that this type has an important role in communication. Furthermore, it seems to belong to the acoustic pattern of Antarctic?s Lobodontines. / Pin?pedes produzem uma variedade de sons subaqu?ticos que frequentemente s?o relacionados com atividades reprodutivas e intera??es sociais. Diversas esp?cies de focas apresentam evid?ncias de vocaliza??es com varia??es geogr?ficas e individuais. A maioria dos trabalhos com focas estudou o repert?rio em ambiente terrestre e com olhares para as an?lises lineares. Entretanto, algumas caracter?sticas das vocaliza??es n?o podem ser explicadas apenas com an?lises lineares ou levando em conta apenas uma parte da vida do animal. Os fen?menos n?o lineares (FNLs) presentes em vocaliza??es (banda lateral, harm?nico, sub-harm?nico, bifona??o, pulos de frequ?ncia e caos determin?stico) ainda s?o pouco estudados. Dada a import?ncia deste fen?meno nas vocaliza??es para o reconhecimento individual, principalmente em mam?feros sociais, este trabalho buscou estudar as vocaliza??es subaqu?ticas de focas ant?rticas, visando conhecer seu repert?rio vocal e seus FNLs, bem como discutir a poss?vel fun??o dos mesmos. Em 2013, a Marinha do Brasil realizou grava??es ac?sticas na Ilha Meia Lua na Ant?rtica. Nesta coleta foram registrados 128GB de arquivos de som nos dias entre 12 e 30 de novembro, totalizando 7.448 arquivos de 3 minutos cada. Nestas grava??es foi constatada a presen?a de focas pertencentes ? Tribo Lobodontini. Contatou-se tamb?m a presen?a de 15 tipos de vocaliza??es no per?odo entre os dias 12 a 16/novembro. Em todos os dias que houve grava??es de focas foi observado um padr?o nos tipos L, K e E, organizados na sequ?ncia K, L e E, respectivamente. Ap?s a inspe??o visual de todos os arquivos, foram encontrados pulos de frequ?ncia, bifona??es, harm?nicos, bandas laterais e caos determin?stico em nove tipos de vocaliza??es (A, C, E, F, K, L, M, N e O). As n?o linearidades foram abundantes em todos os arquivos, estando presentes em 75,56% (N=1829) das vocaliza??es. O caos determin?stico foi o mais comumente observado, estando presente em 53,86% das fei??es n?o lineares e 43,08% das vocaliza??es em geral. Levando em conta apenas as vocaliza??es tonais, 88,85% das vocaliza??es foram n?o lineares. A repeti??o do padr?o KLE parece apresentar uma fun??o de reconhecimento. Os FNLs, principalmente os do tipo caos determin?stico, estiveram muito presentes nas vocaliza??es estudadas, indicando que este tipo de emiss?o possui uma fun??o importante na comunica??o. Al?m disso, estes parecem pertencer ao repert?rio ac?stico padr?o de Lobodontines ant?rticos.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/2162
Date02 February 2016
CreatorsMACIEL, Israel de S?
ContributorsSim?o, Sheila Marino, Sim?o, Sheila Marino, Silva, Ana Telles Carvalho e, Silva, H?lio Ricardo da, Oliveira, Rodrigo Hip?lito Tardin, Esberard, Carlos Eduardo
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Biologia Animal, UFRRJ, Brasil, Instituto de Ci?ncias Biol?gicas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
RelationANDERSON, M.J. A new method for non?parametric multivariate analysis of variance. Austral Ecology, v. 26, n. 1, p. 32-46. 2001. BALLARD, K.A.; KOVACS, K.M. The acoustic repertoire of hooded seals (Cystophora cristata). Canadian Journal of Zoology, v. 73, p. 1362?1374. 1995. BENKO, T. P.; PERC, M. Singing of Neoconocephalus robustus as an example of deterministic chaos in insects. Journal of Biosciences, v. 32, n. 4, p. 797?804. 2007. BERTA, A.; SUMICH, J. L.; KOVACS, K. M. Marine mammals: evolutionary biology. Academic Press, p. 270-311, 2005. DIGBY, A.; BELL, B.D.; TEAL, P.D. Non-linear phenomena in little spotted kiwi calls. Bioacoustics, v. 23, n. 2, p.113?128. 2014. EDOH, K.; HUGHES, D.; KATZ, R. Nonlinearity in cicada sound signals. Journal of Biological Systems, v. 21, n. 1, p.1350004. 2013. FACCHINI, A.; BASTIANONI, S.; MARCHETTINI, N.; RUSTICI, M. Characterization of chaotic dynamics in the vocalization of Cervus elaphus corsicanus. The Journal of the Acoustical Society of America, v. 114, n. 6, p. 3040?3043. 2003. FEE, M. S.; SHRAIMAN, B.; PESARAN, B.; MITRA, P.P. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, v. 395, p. 67?71. 1998. FENG, A.S.; RIEDE, T.; ARCH, V.S.; YU, Z.; XU, Z.M.; YU, X.J.; SHEN, X.J. Diversity of the vocal signals of concave-eared torrent frogs (Odorrana tormota): evidence for individual signatures. Ethology, v. 115, n. 11, p. 1015?1028. 2009. FILATOVA, O.A.; DEECKE, V.B.; FORD, J.K.B.; MATKIN, C.O.; BARRETT-LENNARD, L.G.; GUZEEV, M.A.; BURDIN, A.M.; HOYT, E. Call diversity in the North Pacific killer whale populations: implications for dialect evolution and population history. Animal Behavior, v. 83, n. 3, p. 595?603. 2012. FILATOVA, O.A.; FEDUTIN, I.D.; NAGAYLIK, M.M.; BURDIN, A.M.; HOYT, E. Usage of monophonic and biphonic calls by free-ranging resident killer whales (Orcinus orca) in Kamchatka, Russian Far East. Acta Ethologica, v. 12, p. 37- 44. 2009. FITCH, W.T.; NEUBAUER, J.; HERZEL, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour. v. 63, p. 407-418. 2002. FLETCHER, N.H. Acoustical background to the many varieties of birdsong. Acoustics Australia, v. 38, p. 59?62. 2010. FLETCHER, N.H. A class of chaotic bird calls? Journal of Acoustic Society of America, v. 108, n. 2, p. 821?826. 2000. HANGGI, E. Importance of vocal cues in other-pup recognition in a California sea lion. Marine Mammals Science, v. 8, p. 430?432. 1992. HANGGI, E.; SCHUSTERMAN, R.J. Underwater acoustic displays and individual variation in male harbor seals, Phoca vitulina. Animal Behavior, v. 48, p. 1275?1283. 1994. HEMIL?, S.; NUMMELA, S.; REUTER, T. What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research. v. 85, p. 31?44. 1995. KASTELEIN, R.A.; THOMAS, J.A.; NACHTIGALL, P.E. Sensory systems of aquatic mammals. DeSpil, Netherlands. 1995. KETTEN, D.R. The marine mammal ear: specializations for aquatic audition and echolocation. In: The evolutionary biology of hearing. Springer New York, p. 717-750. 1992. KOVACS, K.M. Mother-pup reunions in harp seals, Phoca groenlandica: cues for the relocation of pups. Canadian Journal of Zoology, v. 73, p. 843?849. 1995. LE BOEUF, B.J.; WHITING, R.J.; GANTT, R.F. Perinatal behavior of northern elephant seal females and their young. Behaviour, v. 43, n. 3, p. 121-156. 1973. LE BOEUF, B.J.; PETRINOVICH, L.F. Elephant seal dialects: are they reliable? Rapports et Proces-Verbaux des Reunions (Denmark), v. 169, p. 213-218 1975. MANN, D.A.; O?SHEA, T J.; NOWACEK, D.P. Nonlinear dynamics in manatee vocalizations. Marine Mammals Science, v. 22, n. 3, p. 548?555. 2006. MENDE, W.; HERZEL, H.; WERMKE, K. Bifurcations and chaos in newborn infant cries. Physics Letters A, v. 145, p. 418?424. 1990. MERCADO III, E.; SCHNEIDER, J.N.; PACK, A.A.; HERMAN, L.M. Sound production by singing humpback whales. The Journal of the Acoustical Society of America, v. 127, n. 4, p. 2678?2691. 2010. M?HL, B. Hearing in seals. In: The behavior and physiology of pinnipeds. Editado por R. Harrison, R. Hubbard, R. Peterson, C. Rice, and R. Schusterman, Appleton-Cenrury, New York,NY, p. 172-195, 1968. MOORS, H.B.; TERHUNE, J.M. Repetition patterns in Weddell seal (Leptonychotes weddellii) underwater multiple element calls. The Journal of the Acoustical Society of America, v. 116, n. 2, p. 1261-1270. 2004. NEMIROFF, L.; WHITEHEAD, H. Structural characteristics of pulsed calls of long-finned pilot whales Globicephala melas. Bioacoustics, v. 19, n. 1-2, p. 67-92. 2009. NICHOLS, C.R., WILLIAMS, R.G. Encyclopedia of marine science. Infobase Publishing, p. 30-32. 2009. NUMMELA, S. Scaling of the mammalian middle ear. Hearing Research, v. 85, n. 1, p. 18-30. 1995. OKSANEN, J.; KINDT, R.; LEGENDRE, P.; O?HARA, B.; STEVENS, M.H.H.; OKSANEN, M.J.; SUGGESTS, M.A.S.S. The vegan package. Community ecology package, p. 631-637. 2007. OWREN, M. J.; RENDALL, D. Sound on the rebound: bringing form and function back to the forefront in understanding non-human primate vocal signalling. Evolutionary Anthropology, v. 10, n. 2, p. 58?71 2001. PAHL, B.C.; TERHUNE, J.M.; BURTON, H.R. Repertoire and geographic variation in underwater vocalisations of Weddell seals (Leptonychotes weddellii, Pinnipedia: Phocidae) at the Vestfold Hills, Antarctica. Australian Journal of Zoology, v. 45, n. 2, p. 171-187. 1997. PAPALE, E.; BUFFA, G.; FILICIOTTO, F.; MACCARRONE, V.; MAZZOLA, S.; CERAULO, M.; GIACOMA, C.; BUSCAINO, G. Biphonic calls as signature whistles in a free-ranging bottlenose dolphin. Bioacoustics, n. ahead-of-print, p. 1-9. 2015. PERRIN, W.F.; WURSIG, B. Eds. Encyclopedia of marine mammals. In Boyd, I.L. Antartic Marine Mammals. Academic Press, p. 30-36. 2009. PETTITT, B.; BOURNE, G.; BEE, M. Quantitative acoustic analysis of the vocal repertoire of the golden rocket frog (Anomaloglossus beebei). The Journal of the Acoustical Society of America, v. 131, n. 6, p. 4811-4820. 2012. RAY, C.; WATKINS, W.A.; BURNS, J.J. Underwater song of Erignathus (bearded seal). Zoologica (New York), v. 54, n. 2, p. 79-83. 1969. REIMAN, A.J.; TERHUNE, J. M. The maximum range of vocal communication in air between a harbor seal (Phoca vitulina) pup and its mother. Marine Mammals Science, v. 9, p. 182?189. 1993. REPENNING, C.A. Adaptive evolution of sea lions and walruses. Systematic Zoology, v. 25, p. 375?390. 1972. RICE, A.N.; LAND, B.R.; BASS, A.H. Nonlinear acoustic complexity in a fish ?two-voice? system. Proceedings of the Royal Society B: Biological Sciences, p. rspb20110656. 2011. RIEDE, R.; ARCADI, A.C.; OWREN, M.J. Nonlinear acoustics in the pant hoots of common chimpanzees (Pan troglodytes): vocalizing at the edge. The Journal of the Acoustical Society of America, v. 121, n. 3, p. 1758?1767. 2007. RIEDE, T.; OWREN, M.J.; ARCADI, A.C. Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, v. 64, n. 3, p. 277?291. 2004. ROBB, M.P.; SAXMAN, J.H. Acoustic observations in young children?s non-cry vocalizations. Journal of the Acoustical Society of America, v. 83, p. 1876?1882. 1988. ROGERS, T.L.; CATO, D.H.; BRYDEN, M.M. Underwater vocal repertoire of the leopard seal (Hydrurga leptonyx) in Prydz Bay, Antarctica. Sensory Systems of Aquatic Mammals. De Spil, The Netherlands. Editado por R. A. Kastelein, J. A. Thomas e and P. E. Nachtigall. p. 223-236. 1995. ROGERS, T.L.; CATO, D. H. Individual variation in the acoustic behaviour of the adult male leopard seal, Hydrurga leptonyx. Behaviour, v. 139, n. 10, p. 1267-1286. 2002. ROUX, J. P.; JOUVENTIN, P. Behavioral cues to individual recognition in the subantarctic fur seal, Arctocephalus tropicalis. NOAA Technical Report NMFS, v. 51, p. 95-102. 1987. SIRVIO, P.; MICHELSSON, K. Sound spectrographic cry analysis of normal and abnormal newborn infants. Folia Phoniatrica, v. 28, p. 161?173. 1976. STIRLING, I.; CALVERT, W.; SPENCER, C. Evidence of stereotyped underwater vocalizations of male Atlantic walruses (Odobenus rosmarus rosmarus). Canadian Journal of Zoology, v. 65, n. 9, p. 2311-2321. 1987. STIRLING, I.; THOMAS, J.A. Relationships between underwater vocalizations and mating systems in phocid seals. Aquatic Mammals, v. 29, n. 2, p. 227-246. 2003. SAUV?, C.C.; BEAUPLET, G.; HAMMILL, M.O.; CHARRIER, I. Acoustic analysis of airborne, underwater, and amphibious mother attraction calls by wild harbor seal pups (Phoca vitulina). Journal of Mammalogy, v. 96, n. 3, p. 591-602. 2015. TERHUNE, J. M.; RONALD, K. Some hooded seal (Cystophora cristata) sounds in March. Canadian Journal of Zoology, v. 51, p. 319?321. 1973. THOMAS, J.; KASTELEIN, R.A.; SUPIN, A.Y. Marine Mammal Sensory Systems, Plenum Press, New York. 1992. THOMAS, J.A.; KUECHLE, V.B. Quantitative analysis of the Weddell seal (Leptonychotes weddellii) underwater vocalizations at McMurdo Sound, Antarctica. Journal of the Acoustical Society of America, v. 72, p. 1730?1738. 1982. THOMAS, J. A.; STIRLING, I. Geographic variation in the underwater vocalisations of Weddell seals (Leptonychotes weddellii) from Palmer Peninsula and McMurdo Sound, Antarctica. Canadian Journal of Zoology, v. 61, p. 2203-2212. 1983. THOMAS, J.A.; GOLLADAY, C.L. Geographic variation in leopard seal (Hydrurga leptonyx) underwater vocalizations. In: Sensory Systems of Aquatic Mammals. Editado por Kastelein RA, Thomas JA, Nachtigall PE, v. 61 p. 201-221. 1995. TYACK, P.L.; MILLER, E.H. Vocal anatomy, acoustic communication and echolocation. In: Marine mammal biology: An evolutionary approach. Editado por R. Hoetzel, Oxford, UK: Blackwell Science. p. 142-184. 2002. TYSON, R.B.; NOWACEK, D.P.; MILLER, P.J.O. Nonlinear phenomena in the vocalizations of North Atlantic right whales (Eubalaena glacialis) and killer whales (Orcinus orca). Journal of the Acoustical Society of America, v. 122, n. 3, p. 1365?1373. 2007. TRUBY, H.M.; LIND, J. Cry sounds of the newborn infant. In: Newborn Infant Cry. Editado por J. Lind). Uppsala: Almquist e Wiksells Boktryckeri, p. 7?59. 1965. VAN PARIJS, S.M.; KOVACS, K.M.; LYDERSEN, C. Spatial and temporal distribution of vocalising male bearded seals - implications for male mating strategies. Behaviour, v. 138, n. 7, p. 905-922. 2001. VOLODIN, I.A.; VOLODINA, E.V. Biphonation as a prominent feature of dhole Cuon alpinus sounds. Bioacoustics, v. 13, n. 2, p. 105?120. 2002. VOLODINA, E.V.; VOLODIN, I.A.; ISAEVA, I.V.; UNCK, C. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology, v. 112, p. 815?825. 2006. WATKINS, W. A.; RAY, G. C. In?air and underwater sounds of the Ross seal, Ommatophocarossi. The Journal of the Acoustical Society of America, v. 77, n. 4, p. 1598-1600. 1985. WATKINS, W. A. The harmonic interval: fact or artifact in spectral analysis of pulse trains. In: Marine Bio-Acoustics. Editado por W. N. Tavolga, (Pergamon, Oxford), v. 2 p. 15-43. 1968. WILDEN, I.; HERZEL, H.; PETERS, G.; TEMBROCK, G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics, v. 9, n. 3, p. 171?196. 1998. WYSS, A.R. The walrus auditory region and the monophyly of Pinnipeds. American Museum Novitates, v. 2871, p. 1?31. 1987. ZOLLINGER, S.A.; RIEDE, T.; SUTHERS, R.A. Two-voice complexity from a single side of the northern mockingbird Mimus polyglottos vocalizations. The Journal of Experimental Biology, v. 211, p. 1978?1991. 2008.

Page generated in 0.0134 seconds