Return to search

Síntese, caracterização e estudo das propriedades magnéticas de CoFe(2-x)YxO4, 0≤x≤0,05, produzidas por reação de combustão / Synthesis, characterization and studies of magnetic properties of CoFe(2-x)YxO4, 0≤x≤0,05, produced by combustion reaction

Submitted by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T20:05:43Z
No. of bitstreams: 2
Nascimento, Thaísa Cardoso-2013-dissertação.pdf: 5562960 bytes, checksum: 3da89e8903269de85813600afded8dde (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T20:05:53Z (GMT) No. of bitstreams: 2
Nascimento, Thaísa Cardoso-2013-dissertação.pdf: 5562960 bytes, checksum: 3da89e8903269de85813600afded8dde (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-26T20:05:53Z (GMT). No. of bitstreams: 2
Nascimento, Thaísa Cardoso-2013-dissertação.pdf: 5562960 bytes, checksum: 3da89e8903269de85813600afded8dde (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-07-23 / Compounds of CoFe(2-x)YxO4, with 0 x 0.05, were synthesized by
combustion reaction. On the synthesis we used as oxidizing reagents, iron
nitrate Fe(NO3)3.9H2O, cobalt nitrate Co(NO3)2.6H2O, yttrium nitrate
Y(NO3)3.6H2O and as a fuel reducer, was used urea CO(NH2)2 with 300% in
excess. Post nanometric of cobalt ferrite in the spinel structure was obtained,
wich formed crystalline aggregates, with crystallite average size of 20 ± 3 nm.
The results of X-ray diffraction showed well defined diffraction peaks
characteristic of the pure phase CoFe2O4, not showing secondary phase for
all the compounds stoichiometries. The infrared spectra showed bands
characteristic of the metal and the oxygen bonds in the octahedral and
tetrahedral sites around 590-600 cm-1 and 400 cm-1 respectively, as well as,
shifting of the same to higher frequencies, also showed bands relating to
residual compounds bonds of the synthesis stage, that was eliminated during
the heating to obtain the thermograms. The thermograms showed the
material chemical stability and the residual compounds elimination and the
crystallization of the same starting at 400°C. The micrographs achieved
through transmission electron microscopy showed crystalline agglomerates
and using the program Image J. was possible to make 301 counts of the
particles diameters and to obtain a mean value for the sample x = ~ 1.5% of
18.58 nm, close to that obtained by the Scherrer equation, which for this
sample was ~19 nm. The scanning electron microscopy via Energy
Dispersive Spectrometer (EDS) was used to determine the chemical
composition of the experimental material, and along with the stoichiometric
calculate the values were tabulated. The data exposed in the table showed
an agreement with the calculated values whit the obtained. The magnetic
analysis revealed that the samples show the typical ferrimagnetism of the compound nature dependent of the Y3+ concentration. / Compostos de CoFe(2-x)YxO4, com 0 x 0,05, foram sintetizados por
reação de combustão. Na síntese foram empregados como reagentes
oxidantes; nitrato de ferro, Fe(NO3)3.9H2O, nitrato de cobalto
Co(NO3)2.6H2O, nitrato de ítrio Y(NO3)3.6H2O e como redutor, combustível,
foi usado uréia CO(NH2)2 com 300% em excesso. Pós nanométricos de
ferritas de cobalto na estrutura de espinélio foram obtidos, formaram
agregados cristalinos, com tamanho médio dos cristalitos de 20 ± 3 nm. Os
resultados de Difração de raios X mostraram os picos de difração bem
definidos característicos da fase de CoFe2O4 pura, não apresentando fase
secundária para todas as estequiometrias do composto. Os espectros de
infravermelho mostraram as bandas característica das ligações metal e
oxigênio nos sítios tetraédricos e octaédricos em torno 590-600 cm-1 e 400
cm-1 respectivamente, bem como deslocamento das mesmas para
freqüências maiores, apresentaram também bandas referente a ligações de
compostos residuais da etapa de síntese eliminados durante o aquecimento
para obtenção dos termogramas. Os termogramas mostraram a estabilidade
química do material, a eliminação de compostos residuais e a cristalização
do mesmo a partir de 400°C. As micrografias obtidas através da
microscopia eletrônica de transmissão mostraram aglomerados cristalinos e
através do programa Image J. foi obtido o valor médio dos diâmetros das
partículas para a amostra x=1,5% de ~19±6 nm, próximo ao obtido pela
equação de Scherrer, que para a referida amostra foi de ~19±3 nm. A
microscopia eletrônica de varredura através do Espectrômetro de Energia
Dispersiva (EDS) foi usado para determinar a composição química
experimental do material e juntamente com o calculado
estequiometricamente os valores foram tabelados. Os dados exposto na tabela mostraram uma concordância dos valores calculados com os obtidos.
As análises magnéticas revelaram que as amostras apresentam
ferrimagnetismo característico da natureza do composto dependente da
concentração de Y3+.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3192
Date23 July 2013
CreatorsNascimento, Thaísa Cardoso
ContributorsFranco Júnior, Adolfo, Ruggiero, Marçal Antonio, Gomes, Danielle Cangussu de Castro
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Química (IQ), UFG, Brasil, Instituto de Química - IQ (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation663693921325415158, 600, 600, 600, 7826066743741197278, -8661602105461439549, BAHADUR, D. Current trends in aplications of magnetic ceramic materials. bulletin of material science , 15, 431-439, 1992. BERKOWITZ, A. S. Magnects Properties of Some Ferrite Micropowdes. J. Appl. Phys. 134, 1959. CALLISTER Jr, W. Fundamento da Engenharia dos Materiais. Rio de Janeiro: LTD, 2004. CHANDRASEKARAN, G., & Nimy SEBASTIAN, P. Magnetic study of ZnxMg1-xFe2O4 mixed ferrites. Materials Letters , 37, p. 17-20, 1998. CHOIA, E. J. et al. Cation Distribution and Spin-Canted Structure in Cobalt Ferrite Particles from a Cobalt-Irion Hydroxide Carbonete Complex. Journal of the Korean Physical Society, v. 44, n 6, p. 1518-1520, 2006. COSTA, A. C. F. M.; TORTELLA E.; MORELLI M. R; M. KAUFMAN, KIMINAMI R.H.; Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4nanopowders. J. Mater. Sci.37, 3569, 2002. COSTA, A. C. F. M.; MORELLI, M. R.; KIMINAMI, R. H.; Combustion Synthesis Processing of Nanoceramics. Handbook of Nanoceramicsand Their Based Nanodevices. Ed. American Scientific Publishersaccept, 2007. CORNEJO D. R.; MEDINA-BOUDRI A.; BERTORELLO H. R.; MATUTESAQUINO J.; MAGN. MAGN. MATER.Magnetization reversal in coprecipitated cobalt ferrite.242,194, 2002. CULLITY, B. D. Elements of X-ray difraction. Notre Dame, Indiana: Addison- Wesley publishing company, Inc. 1956. CULLITY, B. D. & GRAHAM, C. D. Introduction to Magnetic Materials (Second Edition ed.). Hoboken: John Wiley & Sons, Inc., 2009. FONER, S. The vibrating sample magnetometer: Experiences of a volunteer. Journal of Applied Physics , 79 , p. 4740-4745, 1996. FONER, S. Determine MH by Vibration Magnetometer, 1955. FOUNDING, A. Editor James A. Schwarz. DEKKER Encyclopedia of Nanoscience And Nanotechnology (2ª Edição ed., Vol. 3). (C. I. Contescu, & K. Putyera, Eds.) Taylor & Francis Group. 2008. FRANCO JR, A. Synthesis of nanoparticles of CoxFe(3-x)O4 (0,5< x < 1,5) by combuston reaction method. Journal of Magnetism and Magnetic Materials , 308, pp. 198-202, 2007. FRANCO JUNIOR, A. Enhanced Magnetization of nanoparticles of MgxFe(3- x)O4 (0,5 x 1,5) synthesized by combuston reaction. Applied Physics A: Materials Science & Processing. v. 94, p. 131-137, 2009. FUMO, D. A., Morelli, M. R., & Segadães, M. A. Combustion synthesis of calcium aluminates. Materials Research Bulletin , 31, pp. 1243-1255, 1996. FUMO, D. A.; JURADO, J. R., SEGADÃES, A. M.; & FRADE, J. R. Combustion syntesis of irion-substituted strontium titanate perovskites. Materials Research Bulletin. v. 32, p. 1459- 1470, 1997. GOLDMAN, A. Modern Ferrite Technology, 2nd Ed. Pittsburgh: Springer, 2006. GOPAL, R. C., Manorama, S., & Rao, V. J. Preparation and characterization of ferrites as gas sensor materials. Journal of Materials Science Letters , 19, pp. 775–778, 2000. GRIGOROVA M. Magnetic Properties and Mossbauer Spectra of Nanosize CoFe2O4 Powders. J. Mang. Mang Mater. 163, 1998. HATAKEYAMA, T.; LIU, Z. Handbook of Thermal Analisys. Chichester: John Wiley e Sons, p. 452, 1998. HOFLMANN, E. A. Environmental Applications of Semiconductor Photocatalysis,. Chemical Reviews , 1995. HOLLAND, T. & REDFERN, S. Retrieved from UNITCELL: http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/crush/pub/minp/UnitCell/. 2006 JAIN, S. R.; ADIGA, K. C.; PAI VERNEKER; V. A. New approagh to termochemical calculations of condensed fuel – oxidizer mixture.Combustion and flame, v.40, p. 71-79, 1981. KODAMA, R. M et al. Surface spin disorder in NiFe2O4 nanoparticles. Physical Review Letters, v. 77, p. 394-397, 1996. KIMINAMI, J. K. (2001). Powder Part. 156, 2001. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. Introduction to Ceramics. New York: John Wiley and Sons, 1976. LEE, J. G., PARK,J. Y., OH, Y. J.,KIM, C. S. Magnetic properties of CoFe2O4 thin films prepared by a sol-gel method. J. Appl. Phys,n.84, 2801, 1998. LIU, C.; RONDIONE, A. J.; ZHANG, Z. J. Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size dependent superparamagnetic properties. Pure Applied Chemistry, v. 72, p. 37-45, 2000. LIU, Y. L. et al. Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B., v 18, p. 600-604, 2000. MELIKHOV,Y., SNYDER, J. E., JILES, D. C.,RING, A. P.,PAULSEN, J. A., et al. Temperature dependence of magnetic anisotropy in Mn-substituted cobalt ferrite.J. Appl. Phys. 99, 08R102, 2006. MELIKHOV, Y., SNYDER, J. E., C. C. H. Lo, P. N. MATLAGE, P. N.,SONG,S. H., DENNIS, K. W., and JILES, D. C.The Effect of Cr-Substitution on the Magnetic Anisotropy and Its Temperature Dependence in Cr-Substituted Cobalt Ferrite. IIEEE trans. Magn.42, 4861, 2006. MONEY, E. K.; NETSON, J. A. e WGNER, M. J. Chem Mater. Superparamagnetic Cobalt Ferrite Nanocrystals Synthesized by Alkalide Reduction.16, 3155, 2004. MOORE, J. Combustion synthesis of advanced Materials: Part 1. Reaction parameters. Progress in Materials Science , 39, 1995. MOUALLEM-BAHOUT, M., BERTRAND, S., & PEÑA, O. Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor. Journal of Solid State Chemistry , 178, pp. 1080-1086, 2005. NATIONAL SCIENCE AND TECNOLOGY COUNCIL. Nanotechnology Research Directions: IWGN Worksshop Report. Washington: NSTC, 1999. NLEBEDIM, I. C., RANVAH, N.,MELIKHOV, Y.,WILLIANS, P. I.,SNYDER, J.E.,MOSES, A. J., and JILES, D. C.Effect of temperature variation on the magnetostrictive properties of CoAlxFe2-xO4. J. Appl. Phys. 107, 936, 2010. O'HANDLEY, R. C. Modern Magnetic Materials. New York: Wiley-Interscience Publication John Wiley & Sons, 2000. PATIL, K. C. & Sekar, M. M. Combustion Synthesis and Properties of Fineparticle Dielectric Oxide Materials. Journal of Materials Chemistry , 2(7), pp. 739-743, 1992. RAJENDRAN, M.; PULLA, R. C.; BHATTACHARYA, A. K.; DAS, D.; CHINTALAPUDI, S. N.; MAJUMDAR, C.K. Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite sizeJ. MAGN. MAGN.MATER. 232, 71, 2001. RESENDE, S. M. NANOMAGNETISMO. NANOCIÊNCIA & NANOTECNOLOGIA, 2002. RESENDE, S. M. Componentes Eletronicos. São Paulo: Livraria da Física, 2007. RONDIONE, A. J.; SAMIA, A. C.; ZHANG. Z. J. Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles. Applied Physics letters. V. 76, n 24, p. 3624-3626, 2000. SAMPAIO, C. L. (2000). Tecnicas de Magnetometria. Revista Brasileira de Ensino de Fisica, v. 22, 2000. SHANNON, R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica. A 32, p. 751-767, 1976. SILVERSTEIN, R. Identificação Espectrométrica de Compostos Orgânicos. Rio de Janeiro: Guanabara Dois, 1979. SKOOG, D. A., Holler, F. J., & Nieman, T. A. Princípios de Análise Instrumental. 5 . Porto Alegre: Bookman, 2002. SUGIMOTO, M. (1999). The Past, Present, and Future of Ferrites. Journal of the American Ceramic Society, v. 82 , p. 269-280, 1999. SUN, C. Q. Size dependence of nanostructures: Impact of bond order deficience. Progress in Solid State Chemistry, v. 35, p. 1-159, 2007. WALDRON, R. Infrared spectra of ferrites. Physical Review, v. 99, 1955. WARREN, B. E. X-Ray Diffraction. Dover, New York: addison wesley, 1990. YAN, H. C. Nanophased CoFe2O4 prepared by combustion method. Solid State Communications, v. 11, 1999. ZHANG, B. Ferromagnetic modification of ZnO by Fe3+ ions implantation. Nuclear Instruments and Methods in Physics Research B., v. 266, p. 4891- 4895, 2000.

Page generated in 0.0026 seconds