Made available in DSpace on 2016-06-02T20:06:01Z (GMT). No. of bitstreams: 1
1989.pdf: 231034 bytes, checksum: 31bd4dd9e300bf47b5b32ecca7d161ab (MD5)
Previous issue date: 2008-06-09 / Financiadora de Estudos e Projetos / For the most part of modelings in the credit risk area, the most widely used model is the credit scoring, and as the main statistical technique, the binary logistic regression, used to determine whether a customer is a good or bad payer. In this academic work an alternative methodology is proposed, where the estimative is formed based on the scores obtained by customers; this means the response follows a binomial distribution. In this modeling the combined estimate of scores of various products used by customers is included, considering the correlation between these scores. / Em grande parte das modelagens na área de risco de crédito, o modelo mais utilizado é o credit scoring, e como técnica estatística principal a regressão logistica binária, utilizada para decidir se um cliente é bom ou mau pagador. Neste trabalho propomos uma metodologia alternativa, onde a estimativa é feita diretamente nos escores dos clientes, com issa a resposta segue uma distribuição binomial. Nessa modelagem incluimos ainda a estimativa conjunta dos escores de vários produtos utilizados pelos clientes, levando em consideração a correlação existente entre estes escores.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4520 |
Date | 09 June 2008 |
Creators | Souza, Victor Hugo Delvalle |
Contributors | Louzada Neto, Francisco |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds