Orientador: Jose Mario Martinez / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-20T09:02:18Z (GMT). No. of bitstreams: 1
Kozakevich_DanielNorberto_D.pdf: 2198626 bytes, checksum: 812baa3cb1fe240f09fb5febd703aded (MD5)
Previous issue date: 1995 / Resumo: Esta tese contém contribuições teóricas e práticas no campo da resolução de sistemas algébricos não lineares de grande porte. Esse tipo de sistemas aparece com muita frequencia em aplicações de engenharia e física, portanto, é nesse tipo de problemas que nos concentramos. Nosso aporte com prende quatro áreas: . A comparação controlada, do ponto de vista computacional, dos métodos de Newton, Newton modificado, Broyden e Column-Updating, com e sem estratégias de globalização, em um conjunto de problemas originados na discretização de equações diferenciais parciais. Procuramos aqui identificar situações problemáticas e fornecer um panorama claro sobre o que é de se esperar de algoritmos mais ou menos clássicos para resolver problemas com variados graus de dificuldade.
. A análise e resolução exaustiva do "problema da cavidade", para altos números de Reynolds, descartando as estratégias de globalização por otimização (de pobre desempenho neste caso) e reivindicando táticas homotopicas muito simples. O desempenho de alguns métodos quase-Newton, neste caso, é muito bom. A introdução de um método novo do tipo Newton-inexato, com uma variação que permite uma resolução eficiente de problemas de autovalores não lineares. Esses problemas: são, por direito próprio, sistemas não lineares mas, ao mesmo tempo, refletem com bastante fidelidade o grau de dificuldade que pode ser encontrada em outros sistemas dependentes de um parâmetro. A resolução de um problema de evolução (petróleo) onde em cada nível temporal deve ser resohoido um sistema não linear. Neste caso, métodos quase-Newton com Jacobiano inicial escolhido como fatoração incompleta provaram ser notavelmente eficientes / Abstract: Not informed / Doutorado / Doutor em Matemática Aplicada
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307435 |
Date | 20 June 1995 |
Creators | Kozakevich, Daniel Norberto |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Martínez Pérez, José Mario, 1948- |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática Aplicada e Computacional |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 94f., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0337 seconds