Return to search

Estudo da solidificação equiaxial utilizando o modelo do campo de fases tridimensional. / Study of the equiaxed solidification using the three-dimensional phase-field model.

Este trabalho apresenta um estudo da solidificação de metais puros utilizando o modelo de campo de fases. O modelo é utilizado para simular a solidificação com o intuito de obter a morfologia da interface sólido-líquido sob diversas condições de transferência de calor. Foram realizados testes de validação comparando as morfologias da interface sólido-líquido obtida com as morfologias apresentadas em trabalhos anteriores para os casos bi e tridimensionais. O modelo do campo de fases adotado consiste principalmente de duas equações diferenciais: uma para calcular a variável de campo de fases e outra para calcular o campo de temperaturas. As equações foram solucionadas numericamente para um oitavo do domínio devido a simetria do problema. Os cálculos do modelo indicam que um sólido esférico com um raio inicial menor que o raio crítico de nucleação refunde. Entretanto uma esfera de raio maior cresce. Quando o sólido inicial cresce em uma malha numérica relativamente grosseira, a forma do sólido desvia da forma esférica devido perturbações na interface sólido-líquido. Quando a malha é refinada, as perturbações não são detectadas; contudo, quando introduzidas artificialmente as perturbações crescem e distorcem o formato esférico. / This work presents a study of the solidification of pure metals using the phase field model. The model is used to simulate solidification in order to obtain the morphology of the solid-liquid interface under different heat transfer conditions. Validation tests were performed comparing the morphology of the solid-liquid interface with the morphologies obtained from previous works for two and three dimensional cases. The adopted phase-field model consisted mainly of two differential equations: one to calculate the field of phase variable and another for the temperature field. The equations were solved numerically in only one eighth of the domain owing to the symmetry of the problem. Model calculations show that a solid sphere with an initial radius smaller than the critical radius for nucleation shrinks, whereas a sphere with a larger radius grows. When it grows in a relatively coarse numerical mesh, the initial solid shape deviates from a sphere owing to perturbations at the solid-liquid interface. When the numerical mesh is refined, the growth of perturbations is not detected, but artificially introduced perturbations grow and distort the spherical shape.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-14062016-102840
Date15 December 2015
CreatorsAlan Lamotte
ContributorsMarcelo de Aquino Martorano, Marcio Gustavo di Vernieri Cuppari, Roberto Gomes de Aguiar Veiga
PublisherUniversidade de São Paulo, Engenharia Metalúrgica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds