Return to search

Catequina e epicatequina minimizam a toxicidade induzida pela amiodarona em fibroblasto de pulmão humano (MRC-5)

A amiodarona é um dos fármacos mais usados para o tratamento de arritmias cardíacas, tanto ventriculares como supraventriculares. Apesar de sua eficácia, o uso da amiodarona está associado a vários efeitos adversos, incluindo a toxicidade pulmonar. O mecanismo pelo qual a amiodarona causa lesão nas células pulmonares humanas não é inteiramente conhecido, mas estudos em cultura de células hepáticas humanas e pulmonares de ratos têm sugerido que a disfunção mitocondrial e o estresse oxidativo têm um papel importante na citotoxicidade da amiodarona. Os compostos fenólicos, incluindo catequina e epicatequina são amplamente distribuídos na natureza e conhecidos por sua capacidade de reduzir o estresse oxidativo. Além disso, alguns compostos fenólicos são capazes de modular a atividade mitocondrial. Em vista disso, o objetivo deste trabalho foi avaliar a capacidade dos compostos fenólicos catequina e epicatequina em a disfunção mitocondrial e os danos oxidativos causados pela amiodarona em células de fibroblasto de pulmão humano (MRC-5). Para atingir os objetivos as células MRC-5 foram tratadas com diferentes concentrações de catequina e epicatequina e após foram expostas a amiodarona 100 μM. A disfunção mitocondrial foi determinada através da atividade do complexo I da cadeia de transporte de elétrons e a biossíntese de ATP usando kits específicos. A viabilidade celular foi avaliada através do ensaio de 3-[4,5- dimetiltiazol 2-il]-2,5 difenil brometo de tetrazolina. A atividade das enzimas superóxido dismutase e catalase foram determinadas espectrofotometricamente. Os danos oxidativos a lipídeos e proteínas foram verificados através dos ensaios de substâncias reativas ao acido tiobarbitúrico e a proteínas carboniladas, respectivamente, e os níveis de óxido nítrico foram avaliados usando o método de Griess. Os resultados mostraram que a amiodarona inibiu a atividade do complexo I da cadeia de transporte de elétrons em 53% e a biossíntese de ATP em 9,5% e tanto a catequina como a epicatequina foram capazes de evitar estes efeitos em todas as concentrações (5, 10, 20 μM) testadas. Verificou-se que a amiodarona reduziu a atividade das enzimas superóxido dismutase e catalase (indicando produção de superóxido e peróxido de hidrogênio) e aumentou os danos oxidativos a lipídeos e proteínas. Os compostos fenólicos catequina e epicatequina foram capazes de minimizar as alterações no metabolismo redox induzidos pela amiodarona e aumentar a viabilidade nas células MRC-5. Catequina e epicatequina reduziram a depleção de óxido nítrico causada pela amiodarona. Este trabalho mostrou, pela primeira vez, que o mecanismo de toxicidade da amiodarona em células MRC-5 está associado à disfunção mitocondrial, principal causa de geração de dano oxidativo celular e que estes efeitos tóxicos são em parte reduzidos pela catequina e epicatequina. Embora outros estudos sejam necessários, estes dados abrem novas perspectivas para estudos visando o desenvolvimento de medicamentos que minimizem os efeitos tóxicos da amiodarona. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2015-12-09T15:32:21Z
No. of bitstreams: 1
Dissertacao Luciana Fernandes Silva Santos.pdf: 1790981 bytes, checksum: 4f3e8dbb7bc255b525503174b7e1a3d2 (MD5) / Made available in DSpace on 2015-12-09T15:32:21Z (GMT). No. of bitstreams: 1
Dissertacao Luciana Fernandes Silva Santos.pdf: 1790981 bytes, checksum: 4f3e8dbb7bc255b525503174b7e1a3d2 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES. / Amiodarone is among the most widely used drugs for the treatment of ventricular and supraventricular cardiac arrhythmias. However, the use of amiodarone is associated with several side effects including pulmonary toxicity. The mechanism of amiodarone toxicity is not well known, but studies in human liver cells and rats lung cells have been suggested that mitochondrial dysfunction and oxidative stress play important role in the amiodarone cytotoxicity. Phenolic compounds, including catechin and epicatechin are widespread in nature and known for their ability to reduce oxidative stress. In addition, some phenolic compounds are able to modulate mitochondrial activity. Therefore, the objective of this study was to evaluate the ability of phenolic compounds catechin and epicatechin to minimize the mitochondrial dysfunction and oxidative damage induced by amiodarone in human lung fibroblast cells (MRC-5). To achieve the objectives, MRC-5 cells were treated with different concentrations of catechin and epicatechin and then amiodarone 100 μM. Mitochondrial dysfunction was determined by the activity of complex I of the electron transport chain and ATP biosynthesis using specific kits. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The activity of the enzymes superoxide dismutase and catalase were determined spectrophotometrically. The oxidative damage to lipids and proteins have been verified through the test substances reactive to the thiobarbituric acid and carbonyl protein, respectively, and nitric oxide levels were evaluated using the Griess method. The results showed that amiodarone inhibit 53% of the activity of complex I of the electron transport chain and 9.5% of ATP biosynthesis and both catechin and epicatechin were able to avoid these effects in all concentrations (5 10, 20 mM) tested. It was found that amiodarone reduced the superoxide dismutase and catalase activities (indicating the production of radicals superoxide and hydrogen peroxide) and increased oxidative damage to lipids and proteins. Phenolic compounds catechin and epicatechin were able to minimize alterations in the redox metabolism and increase in viability of MRC-5 cells. Furthermore, catechin and epicatechin reduced nitric oxide depletion caused by amiodarone. This study showed, for the first time, that toxicity of amiodarone in human lung cultured cells is associated, at least, in part, with mitochondrial dysfunction which was avoided by catechin and epicatechin. Although further studies are needed, these data open new perspectives for studies aiming the development of drugs that minimize the toxic effects of amiodarone.

Identiferoai:union.ndltd.org:IBICT/oai:vkali40.ucs.br:11338/1083
Date20 November 2015
CreatorsSantos, Luciana Fernandes Silva
ContributorsKlein, Adriane Belló, Antunes, Lusânia Maria Greggi, Laurino, Jomar Pereira, Salvador, Mirian
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UCS, instname:Universidade de Caxias do Sul, instacron:UCS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0143 seconds