Return to search

Estimação do erro em redes de sensores sem fios. / Error estimation in wireless sensor networks.

Wireless Sensor Networks (WSNs) are presented in the constext of information acquisition and we propose a generic model based on the processes of signal sampling and reconstruction.We then define a measure of performance using the error when reconstructiong the signal.The analytical assessment of this measure in a variety of scenarios is unfeasible, so we propose and implement a Monte Carlo experiment for estimating the contribution of six factors on the performance of a WSN, namely: (i) the spatial distribution of sensors, (ii) the granularity of the phenomenon being monitored, (iii) the way in which sensors sample the phenomenon (constant characteristic functions defined on Voronoi cells or on cicles), (iv) the communication between sensors (either among neighboring Voronoi cells or among sensors within a range), (v) the clustering and aggregation algorithms (LEACH and SKATER), and (vi) the reconstruction techniques (by Voronoi cells and by Kriging). We conclude that all these factors have significative influence on the performance of a WSN, and we are able to quantitatively assess this influence. / Apresentamos as redes de sensores sem fios no contexto da aquisição de informação, e propomos um modelo genérico baseado nos processos de amostragem e de reconstrução de sinais. Utilizando esse modelo, definimos uma medida de desempenho do funcionamento das redes através do erro de reconstrução do sinal. Dada a complexidade analítica de se calcular esse erro em diferentes cenários, propomos e implementamos uma experiência Monte Carlo que permite avaliar quantitativamente a contribuição de diversos fatores no desempenho de uma rede de sensores sem fios. Esses fatores são (i) a distribuição espacial dos sensores (ii) a granularidade do fenômeno sob observação (iii) a forma em que os sensores amostram o fenômeno (funções características constantes sobre células de Voronoi e sobre círculos), (iv) as características de comunicação entre sensores (por vizinhança entre células de Voronoi e pelo raio de comunicação), (v) os algoritmos de clusterização e agregação (LEACH e SKATER), e (vi) as técnicas de reconstrução (por Voronoi e por Kriging). Os resultados obtidos permitem concluir que todos esses fatores influem significativamente no desempenho de uma rede de sensores sem fios e, pela metodologia de trabalho, foi possível medir essa influência em todos os cenários considerados.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufal.br:riufal/815
Date16 June 2008
CreatorsFeitosa Neto, José Alencar
ContributorsOrgambide, Alejandro César Frery, FRERY, A. C.
PublisherUniversidade Federal de Alagoas, BR, Modelagem Computacional de Conhecimento, Programa de Pós-Graduação em Modelagem Computacional de Conhecimento, UFAL
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFAL, instname:Universidade Federal de Alagoas, instacron:UFAL
Rightsinfo:eu-repo/semantics/openAccess
Relationbitstream:http://www.repositorio.ufal.br:8080/bitstream/riufal/815/1/dissertacao_JoseAlencarNeto_2008.pdf, bitstream:http://www.repositorio.ufal.br:8080/bitstream/riufal/815/2/dissertacao_JoseAlencarNeto_2008.pdf.txt

Page generated in 0.1917 seconds