Return to search

Studies On The Photocytotoxic Effect Of Ferrocene-Conjugated Copper(II) Complexes

The present thesis deals with different aspects of the chemistry and photo-biology of various ferrocene-conjugated metal complexes, their interaction with double helical DNA, DNA photocleavage and photo-enhanced cytotoxicity in visible light. Phenyl analogues of the active complexes have been synthesized and used for comparison in biological assays.
Chapter I provides an introduction to the potential of metal complexes as photochemotherapeutic agents with special reference to organometallic compounds. A brief overview of Photodynamic Therapy (PDT) as a new modality of cancer treatment has been given. Various modes of non-covalent interactions of small molecules with duplex DNA are mentioned. Recent reports on the metal-based photocytotoxic and DNA cleaving agents including photoactivatable organometallic compounds are discussed. The objective of the present investigation is also presented in this chapter.
Chapter II presents the synthesis, characterization, structure, DNA binding, DNA photocleavage, photocytotoxicity, mechanism of cell death and cellular localization of ferrocene-conjugated L-methionine reduced Schiff base Cu(II) complexes of phenanthroline bases. To explore the role of the ferrocenyl moiety the phenyl analogues of the ferrocenyl complexes are synthesized and used as controls for comparison purpose.
Chapter III deals with the photo-induced DNA cleavage and photo-enhanced cytotoxicity of ferrocene-appended L-tryptophan Cu(II) complexes of heterocyclic bases. The synthesis, characterization, structural comparisons, DNA binding, DNA photocleavage, photocytotoxic activity and cell death mechanism in visible light are discussed in detail.
Chapter IV describes the synthesis, characterization and structure of ferrocenylmethyl-L-tyrosine Cu(II) complexes of phenanthroline bases. The complexes are evaluated for DNA binding, DNA photocleavage and photocytotoxic activity in visible light. The cellular localization of the complexes and the mechanism of cell death induced by the complexes are also discussed.
Chapter V presents the photocytotoxic effect of ferrocene-conjugated L-amino acid reduced Schiff base Cu(II) complexes of anthracenyl/pyrenyl imidazophenanthroline. The ability of the complexes to bind to double helical DNA and cleave it under photo-illumination conditions is described. Evaluation of the complexes as photochemotherapeutic agents and comparison with currently clinically available drug Photofrin are presented. The mechanism of cancer cell death and cellular localization of the complexes are studied by fluorescence microscopy.
Chapter VI describes the synthesis, characterization and photochemotherapeutic efficacy of Cu(II) complexes having ferrocene-appended L-amino acid reduced Schiff base ligands and the naturally occurring polyphenol curcumin. Stabilization of curcumin by complexation to metal for improved photodynamic effect in cancer cells is described with comparison to the parent dye and clinically used drug Photofrin. The mechanism of cell death induced by the copper complexes and their localization in cancer cells are also presented.
Finally, the summary of the dissertation and conclusions drawn from the present investigations are presented.
The references in the text have been indicated as superscript numbers and compiled at the end of each chapter. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the structurally characterized complexes are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted.

Identiferoai:union.ndltd.org:IISc/oai:etd.ncsi.iisc.ernet.in:2005/2528
Date12 1900
CreatorsGoswami, Tridib Kumar
ContributorsChakravarty, Akhil R
Source SetsIndia Institute of Science
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationG25578

Page generated in 0.002 seconds