• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 13
  • 13
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Supramolecular Ruthenium(II) and Osmium(II) Complexes: Synthesis, Characterization, DNA Binding and DNA Photocleavage

Li, Kaiyu January 2017 (has links)
No description available.
2

Ru(II) and Os(II) Polypyridyl Complexes as Luminescence Sensors and PDT Agents

Sun, Yujie 27 September 2010 (has links)
No description available.
3

The Design, Synthesis and Study of Mixed-Metal Ru,Rh and Os, Rh Complexes with Biologically Relevant Reactivity

Wang, Jing 23 January 2013 (has links)
A series of mixed-metal bimetallic complexes [(TL)2M(dpp)RhCl2(TL)]3 (M = Ru and Os, terminal ligands (TL) = phen, Ph2phen, Me2phen and bpy, terminal ligands (TL) = phen, bpy and Me2bpy ), which couple one Ru or Os polyazine light absorber (LA) to a cis-RhIIICl2 center through a dpp bridging ligand (BL), were synthesized using a building block method. These are related to previously studied trimetallic systems [{(TL)2M(dpp)2RhCl2]5+, but the bimetallics are synthetically more complex to prepare due to the tendency of RhIII halide starting materials to react with diimine ligands to form cis-[Rh(NN)2Cl2]+ motifs. The bimetallic complexes, [(phen)2Ru(dpp)RhCl2(bpy)]3+, [(phen)2Ru(dpp)RhCl2(phen)]3+, [(Ph2phen)2Ru(dpp)RhCl2(phen)]3+, [(Me2phen)2Ru(dpp)RhCl2(phen)]3+, [(bpy)2Ru(dpp)RhCl2(bpy)]3+, [(bpy)2Ru(dpp)RhCl2(Me2bpy)]3+ and [(bpy)2Os(dpp)RhCl2(phen)]3+, were characterized and studied by electrochemistry, electronic absorption spectroscopy, ESI-mass spectrometry, steady-state and time-resolved emission spectroscopy. Ï¿" ï¿" The electrochemical properties of bimetallic complexes with polyazine ligands exhibit a reversible one-electron metal-based oxidation, a quasi-reversible RhIII/IICl2 overlapped with a small amount of RhII/ICl and an irreversible RhII/ICl2 �reductions prior to the reversible bridging ligand dpp0/- �reduction. ï¿" ï¿" The title bimetallic complexes are efficient light absorbers due to the [(TL)2MII(dpp)] light absorber subunit. The bimetallics display ligand-based ï¿"'ï¿"* transitions in the UV region and metal-to-ligand charge transfer (MLCT) transitions in the visible region of the spectrum with approximately half the absorption extinction coefficient values relative to the trimetallics in the spectrum. The Os,Rh bimetallic complex, [(bpy)2Os(dpp)RhCl2(phen)]3+, displays Os(dï¿")'dpp(ï¿"*) CT transition at 521 nm and a low energy absorption band at 750 nm in the near-infrared region representing direct 1GS'3MLCT excitation due to the high degree of spin orbital coupling in Os complexes. The bimetallic complexes [(phen)2Ru(dpp)RhCl2(bpy)]3+, [(phen)2Ru(dpp)RhCl2(phen)]3+, [(Ph2phen)2Ru(dpp)RhCl2(phen)]3+, [(Me2phen)2Ru(dpp)RhCl2(phen)]3+, [(bpy)2Ru(dpp)RhCl2(bpy)]3+ and [(bpy)2Ru(dpp)RhCl2(Me2bpy)]3+ display Ru(dï¿")'dpp(ï¿"*) MLCT transitions centered at 505, 508, 515, 516, 510 and 506 nm, respectively. The bimetallic complex [(Ph2phen)2Ru(dpp)RhCl2(phen)]3+ displays enhanced absorption. Ï¿" ï¿" The photophysical properties of Ru,Rh bimetallic complexes are close to those of trimetallic analogues. In room temperature acetonitrile, both bimetallic and trimetallic complexes display a weak and short-lived emission from the Ru(dï¿")'dpp(ï¿"*) 3MLCT excited state. For example, the bimetallic complex [(phen)2Ru(dpp)RhCl2(bpy)]3+ emits at 766 nm and the trimetallic complex [{(phen)2Ru(dpp)}2RhCl2]5+ emits at 760 nm. At 77 K in 4:1 ethanol/methanol glass, the bimetallics, as well as trimetallics, exhibit a more intense blue-shifted emission with a longer lifetime, which is from the same 3MLCT excited state. At 77 K, the low temperature emission from the same 3MLCT state of [{(phen)2Ru(dpp)}2RhCl2]5+ blue-shifts to 706 nm with the emission lifetime of 1.8 ms and the bimetallic [(phen)2Ru(dpp)RhCl2(bpy)]3+ emits at 706 nm (t = 1.8 ms). The Ru,Rh complexes 3MLCT excited states can populate Ru(dï¿")'Rh(ds*) triplet metal-to-metal charge transfer (3MMCT) excited states through intramolecular electron transfer at room temperature, which is impeded in the rigid matrice at 77 K due to the large reorganizational energy and restricted molecular motion. The emission of Os,Rh bimetallic complex [(bpy)2Os(dpp)RhCl2(phen)]3+ could not be detected by our instruments likely due to its expected red-shifted emission which lies outside our detector window. ï¿" ï¿" �The Ru,Rh bimetallics display interesting and efficient photo-reactivity with DNA activated by visible light. The DNA gel shift assay, selective precipitation, ESI-mass spectrometry and polymerase chain reaction (PCR) studies suggest that Ru,Rh bimetallic complexes photobind to DNA following visible light excitation. This reactivity is not observed for analogous Ru,Rh,Ru trimetallics due to the steric protection of the Rh site in that motif. The bimetallic [(TL)2Ru(dpp)RhCl2(TL)]3+ systems can photobind and photocleave DNA through low-lying 3MMCT excited states when excited by the low energy visible light, with or without molecular oxygen. This is unusual but desirable reactivity for photodynamic therapy (PDT) drug development. The Os,Rh bimetallic complex [(bpy)2Os(dpp)RhCl2(phen)]3+ photobinds and photocleaves DNA under red therapeutic light excitation without molecular oxygen, an unprecedented result. Polymerase chain reaction experiments were used to evaluate the impact on DNA amplification of the DNA photo-modification and photo-damage induced by [(bpy)2Os(dpp)RhCl2(phen)]3+ under red light irradiation. Either photobinding or photocleavage induced by red light excitation of [(bpy)2Os(dpp)RhCl2(phen)]3+ on DNA inhibits amplification via PCR methods, a model for in vivo replication. Moreover, significant thermal stability of DNA photo-modification over 90 "C is required for PCR. A red light-activated drug that acts in an oxygen-independent mechanism to impede DNA amplification is unique in this field and desirable for study as a new class of PDT drugs. / Ph. D.
4

Tuning the Photophysical and Biological Properties of a Series of Ruthenium-Based Chromophores and Chromophore Coupled Cisplatin Analogs with Substituted Terpyridine Ligands

Jain, Avijita 16 January 2009 (has links)
The goal of this research was to develop an understanding of the impact of component modifications on spectroscopic properties, DNA interaction, and bioactivity of tridentate, terpyridine containing ruthenium-based chromophores and chromophore coupled cisplatin analogs. The coupling of a light absorbing unit to a bioactive site offers the potential for developing supramolecules with multifunctional interactions with DNA and other biomolecules. A series of supramolecular complexes of the form [(TL)RuCl(dpp)](PF₆) and [(TL)RuCl(BL)PtCl₂](PF₆) with the BL (bridging ligand) = 2,3-bis(2-pyridyl)pyrazine (dpp) and varying TL (terminal ligand) (tpy = 2,2'':6'',2''-terpyridine, MePhtpy = 4''-(4-methylphenyl)- 2,2'':6'',2''- terpyridine, or tBu3tpy = 4,4'',4''-tri-tert-butyl-2,2'':6'',2''-terpyridine) have been designed and developed. The investigations described in this thesis were focused on the design and development of multifunctional supramolecules with improved DNA interaction and antibacterial properties. The impact of component modifications on photophysical and biological properties of the designed the supramolecular complexes was investigated. A series of supramolecular complexes of the type, [(TL)RuCl(dpp)](PF₆) and [(TL)RuCl(dpp)PtCl₂](PF₆), have been synthesized using a building block approach. Electronic absorption spectroscopy of these types of complexes displayed intense ligand-based transitions in the UV region and metal to ligand charge transfer (MLCT) transitions in the visible region. The Ru to dpp MLCT transitions in RuIIPtII bimetallic complexes were found to be red-shifted relative to the monometallic synthons. The MLCT transitions for [(TL)RuCl(dpp)](PF₆) and [(TL)RuCl(dpp)PtCl₂](PF₆) were centered at ca. 520 and 545 nm, in CH₃CN respectively. The RuIIPtII bimetallic complexes with (TL = tpy, MePhtpy, and tBu3tpy) displayed reversible RuII/III couples at 1.10, 1.10, and 1.01 V vs. Ag/AgCl, respectively. The tpy0/- reductions occurred for TL = tpy, MePhtpy, and tBu3tpy at -1.43, -1.44, and -1.59 V vs. Ag/AgCl, respectively. The RuIIPtII complexes displayed a more positive potential for the dpp0/- couples (-0.50 -0.55, -0.59 V for tpy, MePhtpy, and tBu3tpy, repectively) relative to their monometallic synthons (-1.15, -1.16, and -1.22 V), consistent with the coordination of electron deficient Pt(II) metal center. This research also presents first extensive DNA photocleavage studies of these relatively unexplored tridentate, tpy-containing chromophores. The DNA binding and photocleavage properties of a series of homoleptic and heteroleptic chromophores and RuIIPtII bimetallic complexes were investigated using agarose gel electrophoresis and equilibrium dialysis experiments. The heteroleptic complexes, [(MePhtpy)RuCl(dpp)](PF₆), [(tpy)RuCl(dpp)](PF6), and [(tBu3tpy)RuCl(dpp)](PF6), were found to photocleave DNA more efficiently than homoleptic complexes, [Ru(MePhtpy)2]2+, [Ru(tpy)2]2+, and [Ru(tBu₃tpy)2]2+, in the presence of oxygen. Coupling of [(TL)RuCl(BL)] subunit to a cis-PtIICl2 site provides for the application of typically shorter lived RuII(tpy) based chromophores in DNA photocleavage. The [(TL)RuCl(dpp)PtCl₂]+, complexes displayed covalent binding to DNA and photocleavage upon irradiation with visible light modulated by TL identity. The impact of component modifications on antibacterial properties of the designed molecules was explored for the first time. Both the RuIIPtII bimetallic complexes and their monometallic analogs displayed antibacterial properties. [(MePhtpy)RuCl(dpp)](PF₆) was found to be the most efficient antibacterial agent in the series of monometallic and RuIIPtII bimetallic complexes, displaying cell growth inhibition at 0.05 mM concentration compared to 0.1 mM concentration of [(MePhtpy)RuCl(dpp)PtCl₂](PF₆) needed to display the similar effect. A direct correlation was found to exist between the DNA interaction and bactericidal properties of the designed supramolecules. The effects of light on antibacterial properties of [(MePhtpy)RuCl(dpp)](PF₆) were also briefly examined. This complex represents the first inorganic chromophore-based photodynamic antibacterial agent. / Ph. D.
5

Synthesis, Characterization, DNA Binding and Photocleavage Studies of a Di-Ruthenated Porphyrin

Wilson, Dale F. 05 June 2014 (has links)
No description available.
6

Oxidative Damage in DNA: an Exploration of Various DNA Structures

Ndlebe, Thabisile S. 17 May 2006 (has links)
Research efforts to determine the causes, effects and locations of mutations within the human genome have been widely pursued due to their role in the development of various diseases. The main cause of mutations in vivo is oxidative damage to DNA via oxidants and free radical species. Numerous studies have been performed in vitro to determine how oxidative damage is induced in DNA. Most of these in vitro studies require photosensitizers to initiate the oxidative damage through various mechanisms. For the purposes of this research, all the photosensitizers that were used initiated oxidative damage in DNA through the electron transfer mechanism. In the charge transport studies, an anthraquinone photosensitizer was covalently linked to the 5 end of DNA by a short carbon tether in order to determine the pattern of damage induced along the length of the DNA. Anthraquinone preferentially damages guanine bases. Our first work sought to determine the effects of charge transport through guanine rich quadruplex DNA dimers. The dimers were formed by the combination of two hairpins with duplex overhangs extending beyond the quadruplex region. This enabled the optimal comparison of the effects of charge transport between duplex and quadruplex DNA structures. Another area of research we pursued in this area was to determine the effects of charge transport in M-DNA (a novel DNA conformation that was reported to form in the presence of zinc ions at a pH above 8). Earlier work on M-DNA suggested that it behaved like a molecular wire. Our research attempted to determine the effects of charge transport on this structure in order to show the behavior of a DNA molecular wire as compared to the standard studies performed in this area on normal B-DNA structures. Lastly, in collaboration with Dr. Ramaiah and colleagues we designed some viologen linked acridine photosensitizers which were tested for any ability to cleave GGG bulges. In preliminary studies, these viologen linked acridine derivatives showed preferential cleavage for guanine bases. They were not covalently bound to DNA, although they could potentially form non covalent interactions with DNA such as intercalation and/or groove binding. Our overall research goal was to determine the extent and overall effect of oxidative damage (using different photosensitizers) on the various DNA structures mentioned above.
7

Studies on Photocytotoxic Ferrocenyl Conjugates

Babu, Balaji January 2014 (has links) (PDF)
The present thesis deals with different aspects of the chemistry and photo-biology of various ferrocene-conjugates, their interaction with double helical DNA, DNA photocleavage and photo-enhanced cytotoxicity in visible light, localization and cellular uptake to study the mechanism of cell death. Phenyl analogues of the active complexes have been synthesized and used for comparison in biological assays. Chapter I presents an overview of cancer and its types, various treatments for cancer. A general overview on the Photodynamic Therapy, a new modality of light activated cancer treatment and its various possible mechanism of action, has been made. The promise of photoactivated chemotherapy is discussed with recently developed metal based antitumor agents. Biological applications of few ferrocene conjugates as anticancer and anti-malarial agents are discussed. The objective of the present investigation is also presented in this chapter. Chapter II presents the synthesis, characterization, structure, DNA binding, DNA photocleavage, photocytotoxicity and cellular localization of ferrocene-conjugated dipicolylamine oxovanadium(IV) complexes of curcumin. To explore the role of the ferrocenyl moiety the phenyl analogue of the ferrocenyl complexes is synthesized and used as a control for comparison purpose. Chapter III deals with the photo-induced DNA cleavage and photo-enhanced cytotoxicity of ferrocene-conjugated oxovanadium(IV) complexes of heterocyclic bases. The synthesis, characterization, structural comparisons, DNA binding, DNA photocleavage and photocytotoxic activity in visible light are discussed in detail. Chapter IV describes the synthesis, characterization and structure of ferrocene-conjugated oxovanadium(IV) complexes of acetylacetonate derivatives. The complexes are evaluated for DNA binding, DNA photocleavage and photocytotoxic activity in HeLa, MCF-7, 3T3 cells in visible light. The fluorescent nature of the complexes is used to study the cellular localization of the complexes and the mechanism of cell death induced by the complexes is also discussed. Chapter V presents the photocytotoxic effect of ferrocene-conjugated oxovanadium(IV) complexes of different curcuminoids in HeLa , HepG2 and 3T3 cells. Curcumin based fluorescence has been successfully used to study the cellular uptake and localization behavior of the complexes. The positive role of the ferrocenyl complex is evident from the ~4 fold increase in its photocytotoxicity compared to the phenyl analogue. The apoptotic mode of cell death is evident from nuclear co-staining using Hoechst dye. Chapter VI describes the synthesis, characterization and photochemotherapeutic efficacy of ferrocene conjugates of N-alkyl pyridinium salts. Mitochondria targeting property of ferrocene compound having n-butyltriphenylphosphonium group has been studied by JC-1 assay. FACS analysis showed significant sub G1/G0 phase cell-cycle arrest in cancer cells on visible light treatment. Finally, the summary of the dissertation and conclusions drawn from the present investigations are presented. The references in the text have been indicated as superscript numbers and compiled at the end of each chapter. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the structurally characterized complexes are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted. INDEX WORDS: Ferrocene conjugates Crystal structure DNA binding DNA photocleavage Photocytotoxicity Vanadium Cellular Imaging
8

Studies On The Cobalt And Complexes Showing Anaerobic DNA Photocleavage Activity

Lahiri, Debojyoti 06 1900 (has links) (PDF)
Photodynamic therapy (PDT) is a non-invasive treatment of cancer with an advantage of having localized photo-activation of the drug at the targeted tumor cells leaving the healthy cells unaffected by the photo-toxicity of the PDT agent. Organic molecules and 4d/5d metal complexes have been extensively studied for their DNA cleavage activity and photo-cytotoxicity in UV and/or visible light. The photoactivity of the current PDT drugs is due to reactive singlet oxygen species. To address the hypoxic nature within neoplasia and to get a realistic scenario to build model and potent PDT agents, attempts have been made in this thesis work to design and synthesize new cobalt and copper complexes having a variety of ancillary ligands and planar phenanthroline bases showing efficient visible light-induced anaerobic plasmid DNA cleavage activity. The disulfide and thiol compounds are known to generate thyil radical in anaerobic medium in presence of some electron donating solvent. To exploit this chemistry of the sulfur anion radical as a reactive species damaging DNA under light irradiation, we have prepared copper(II) complexes of bis(2-hydroxybenzylamino-ethyl)disulfide and D-penicillaminedisulfide and characterized. The complexes are moderate binders to calf thymus DNA and exhibit plasmid DNA cleavage activity in red light. Near-IR light-induced double-strand DNA cleavage activity is observed for the complexes having 3,3' -dithiodipropionic acid and phenanthroline bases. These complexes show lethal double strand breaks in SC DNA responsible for the inhibition in DNA repair mechanism in the cells thus becoming potent candidates as transcription inhibitors. The work has been extended to achieve better visible light-induced plasmid DNA cleavage activity and UV light-induced photocytotoxicity using a more bio-compatible metal ion, viz. cobalt(II) with the same ligand system and enhancement in the photocytotoxicity is observed. To investigate the role of the disulfide ancillary ligands, complexes of salicylideneaminothiophenol bound to the copper(II) are prepared and the complexes show significant plasmid DNA cleavage activity in red light. Finally, ternary cobalt(III) phenanthroline base complexes are prepared to study their DNA cleavage activity in red light and photo-cytotoxicity in UV light. The complexes show efficient plasmid DNA cleavage activity in red light, significant cytotoxicity in UV light, low dark cytotoxicity, and protein (BSA, lysozyme) cleavage activity in UV light. The mechanistic aspects of the photo-induced DNA and protein cleavage activity of the complexes have been studied. A dual involvement of the charge transfer and d-d band is observed in the photosensitization process leading to generation of reactive oxygen species. In summary, the thesis work presents cobalt and copper complexes having thiolate and disulfide moieties that are designed and synthesized as new photodynamic therapeutic agents showing anaerobic DNA cleavage activity in red light and photocytotoxicity. The present study opens up new strategies for designing and developing cobalt and copper based photosensitizers for their potential photochemotherapeutic applications under hypoxic reaction conditions. References: Lahiri, D. et al., J Chern. Sci, 2010, 122, 321-333; Inorg. Chern., 2009, 48, 339-349; Dalton Trans. 2010,39,1807-1816; Polyhedron, 2010, 29, 2417-2425.
9

Chemistry Of Ferrocene Conjugates Showing DNA Cleavage And Photocytotoxic Activity

Maity, Basudev 07 1900 (has links) (PDF)
Ferrocene is an important molecule in the field of chemical biology due to its stability, unique redox property and significant lipophilicity for better cellular delivery. The medicinal importance of ferrocene is well recognized after its successful incorporation into breast cancer drug tamoxifen and antimalarial drug chloroquin. Designing ferrocene conjugated transition metal complexes is an interesting area of research in the field of photodynamic therapy, a new modality of light activated cancer treatment. The objective of the present thesis work is to develop photoactive ferrocene conjugates showing DNA photocleavage and photocytotoxic activity. We have synthesized the ferrocene conjugated imidazophenanthroline derivative which exhibits visible light induced DNA photocleavage activity and photocytotoxicity in HeLa cell line. The corresponding phenyl analogue is found to be inactive. Polypyridyl platinum(II) complexes of ferrocenyl as well as phenyl moiety are prepared and studied their interactions with calf thymus DNA. The cytotoxicity of the complexes enhance significantly upon irradiation of UV-A light of 365 nm. To enhance the photodynamic potential and to understand the role of organometallic ferrocenyl moiety, ferrocene conjugated terpyridyl copper(II) complexes having planar phenanthroline bases are prepared. The interaction of these complexes with duplex DNA and their photo-induced DNA cleavage and anticancer activity in HeLa cancer cells are studied. The complexes are able to generate ROS in the presence of visible light which causes DNA damage as well as cell death. The importance of ferrocenyl moiety is evidenced from the less activity of the corresponding phenyl analogues complex. We have prepared copper(II) complexes of ferrocenyl methyl dipicolylamine ligand to understand the role of terpyridyl moiety. These complexes lacking any conjugation between the copper(II) and the ferrocenyl moiety are found to be less active compared to the terpyridyl conjugated system. The copper(II) complexes are found to show undesirable dark cytotoxicity in the presence of cellular thiols like GSH. To overcome the dark toxicity problem and to understand the mechanistic aspects of DNA photocleavage and photocytotoxicity, a series of binary ferrocene conjugated terpyridyl complexes of Fe(II), Co(II), Cu(II) and Zn(II) are prepared and their DNA photocleavage and anticancer activity studied. The zinc(II) complex having redox-active ferrocenyl moiety and redox-inactive zinc(II) center exhibits significant PDT effect with low dark toxicity compared to its copper(II) analogue. The ferrocenyl moiety plays an important role towards showing photocytotoxic activity since its phenyl analogue is inactive in nature. Finally, the present thesis work opens up a new strategy for designing and developing new ferrocene based metal complexes as novel photosensitizers for PDT applications.
10

Studies On Lanthanide Complexes Showing Photo-activated DNA Cleavage And Anticancer Activity

Hussain, Akhtar 12 1900 (has links) (PDF)
This thesis work deals with different aspects of the chemistry of La(III) and Gd(III) complexes, their interaction with DNA and proteins, photo-induced cleavage of double-stranded DNA, photocytotoxic effect on cancer cells, cell death mechanism and cellular localization behaviour. Chapter I gives an introduction to the metal-based anticancer agents with special emphasis on clinically used drugs and the growing field of lanthanide therapeutics. An overview of the current strategies of cancer treatment, especially photodynamic therapy (PDT), is presented. Mode of small molecule-DNA interactions and the mechanistic aspects associated with DNA photodamage reactions and PDT effect are discussed with selected examples of compounds that are known to photocleave DNA on exposure to light of different wavelengths. A brief discussion on the various therapeutic applications of the lanthanide compounds is also made. Chapter II presents the synthesis, characterization, DNA binding, BSA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases to explore the UV-A light-induced DNA cleavage activity and photocytotoxicity of the complexes. Chapter III describes the synthesis, characterization, DNA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases with an aim to improve the design of the complexes to achieve better solution stability and DNA binding of the complexes. Chapter IV presents the synthesis, characterization, DNA binding, and UV-A light-induced DNA photocleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of pyridyl phenanthroline bases with an objective to improve the photoactivity of the complexes by introducing an additional pyridyl group. Cell death mechanism and confocal microscopic studies are also carried out to gain more insight into the PDT effect caused by light in the presence of the complex. Chapter V describes the synthesis and characterization of La(III) and Gd(III) complexes of terpyridine bases and acetylacetonate to study the complexes as a new class of photosensitizers to explore their DNA photocleavage activity and photocytotoxicity in HeLa cells. Effect of attaching a glucose moiety to the acetyl acetone (Hacac) ligand has been studied. The cellular uptake behaviour of the La(III) pyrenyl-terpyridine complexes has also been investigated. Finally, Chapter VI presents the synthesis and characterization of curcumin and glycosylated curcumin La(III) and Gd(III) complexes having terpyridine base with an objective to study the photoactivated anticancer activity of the complexes in visible light. This chapter describes the visible light-induced DNA cleavage activity and photocytotoxicity of the complexes by exploiting curcumin and glycosylated curcumin as the photosensitizer ligands. Study on the cellular uptake behavior of curcumin La(III) complexes having pyrenyl terpyridine ligand is also presented. The references have been assembled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes which are characterized structurally by single crystal X-ray crystallography are provided in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is sincerely regretted.

Page generated in 0.0564 seconds