• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defining the Role of Secondary DNA Structures and Transcription Factors on the Transcriptional Control of the HIF-1alpha and VEGF Promoters

Uribe, Diana Judith January 2011 (has links)
Angiogenesis is known to be induced and maintained in tumors by the constant expression of the hypoxia inducible factor 1 alpha (HIF-1α) and human vascular endothelial growth factor (VEGF). In fact, tumor recurrence, aggressive metastatic legions and patient mortality rates are known to be positively correlated with overexpression of these two proteins. The HIF-1α and VEGF promoters contain a polypurine/polypyrimidine (pPu/pPy) tract, which are known to play critical roles in their transcriptional regulation, and are structurally dynamic where they can undergo a conformational transition between B-DNA, single stranded DNA and atypical secondary DNA structures such as G-quadruplexes and i-motifs. We hypothesize that the i-motif and G-quadruplex structures can form within the pPu/pPy tracts of the HIF-1α and VEGF proximal promoters, which play important roles in the transcriptional regulation of these genes by acting as scaffolds for alternative transcription factor binding sites. The purpose of this dissertation was to elucidate the transcriptional regulation of the HIF-1α and VEGF genes through the atypical DNA structures that form within the pPu/pPy tracts of their proximal promoters. We investigated the interaction of the C-rich and guanine-rich (G-rich) strands of both of these tracts with transcription factors heterogeneous nuclear ribonucleoprotein (hnRNP) K and nucleolin, respectively, both in vitro and in vivo and their potential role in the transcriptional control of HIF-1α and VEGF. In this dissertation, we demonstrate that both nucleolin and hnRNP K bind selectively to the G- and C-rich sequences, respectively, in the pPu/pPy tract of the HIF-1α and VEGF promoters. Specifically, the small interfering RNA-mediated silencing of either nucleolin or hnRNP K resulted in the down-regulation of basal VEGF gene, and the opposite effect was seen when the transcription factors were overexpressed, suggesting that they act as activators of VEGF transcription. Taken together, the identification of transcription factors that can recognize and bind to atypical DNA structures within pPu/pPy tracts will provide new insight into mechanisms of transcriptional regulation of the HIF-1α and VEGF gene.
2

Impact of Ligand Shell Architecture on Structure and Reactivity of DNA Aptamer-Linked Gold Nanoparticle Assemblies

Baldock, Brandi 27 October 2016 (has links)
DNA-functionalized gold nanoparticles (DNA-NPs) have enormous potential as building blocks for materials due to their ability to specifically recognize and respond to target molecules and surfaces. The ability of DNA aptamers to adopt different conformations and bind either complementary DNA sequences or analyte molecules allows them to mediate nanoparticle assembly or disassembly, generating selective colorimetric responses. Aptamer-mediated nanoparticle assembly and disassembly is sensitive to the nanoparticle ligand shell composition and structure, yet these topics have not been extensively explored. In this dissertation, a method for determining the ligand shell composition of DNA-NPs is described and a framework for understanding the impact of the DNA assembly arrangement and recognition strand density upon aptamer-mediated nanoparticle assembly and disassembly is developed. Design rules for creating sensors with desired properties are elucidated, leading to creation of sensors with improved detection limits and quantification ranges. A technique was needed to determine the number of DNA strands of any base composition attached to gold nanoparticles (AuNPs) of any core size. A rapid, convenient and inexpensive method to quantify the number of label-free DNA strands attached to AuNPs was therefore developed. This technique was extended to determine two different DNA sequences bound to AuNPs using UV-visible and fluorescence spectroscopy. Based on the results of quantifying the ligand shells of DNA-NPs functionalized with two sequences, disulfide-terminated DNA non-specifically adsorbs and then rearranges to specifically bind the gold surface. The position of the AuNPs and DNA strands within DNA-NP assemblies had a profound influence on their ability to assemble and sense adenosine. Assemblies designed for large inter-AuNP spacing were stable but unable to sense adenosine. Assemblies designed for short inter-AuNP spacing were unstable until the DNA ligand shell was diluted. AuNPs functionalized with the fewest number of aptamers produced assemblies with the lowest detection limit and apparent disassociation constant and the largest analyte quantification range. Increasing the number of aptamer strands per AuNP increased the cooperativity of the AuNP disassembly response to adenosine. This dissertation includes previously unpublished co-authored material.
3

DNA Labels for Improved Detection and Capture with Solid-State Nanopores

Karau, Philipp 16 May 2018 (has links)
Nanopores have emerged as a simple but effective tool to investigate the behavior of polymers in solution. They have shown great potential to simplify expensive and time consuming procedures like DNA sequencing, protein detection, and disease biomarker detection. With the development of in situ fabrication of solid-state nanopores by controlled breakdown (CBD) of a dielectric material, nanomanufacturing of nanopore-based technologies became feasible. However, there are still a lot of challenges to overcome for these applications to become reality. One of the major problems with solid-state nanopores is the rapid passage time of analytes going through the pore, complicating detection and reliable identification of molecules. In this thesis molecular structures are proposed that increase passage times due to increased interactions between analyte and pore wall, and at the same time increase signal amplitude due to increased blockage of the pore. These structures are short, branched DNA molecules that were assembled with built-in modifications and matching sequences to assume their structure. Nanopore experiments reveal that these structurally defined DNA produce higher detection rates than their linear DNA counterparts, making them better candidates for labels in single-molecule sensing experiments.
4

Dynamic DNA motors and structures

Lucas, Alexandra January 2016 (has links)
DNA nanotechnology uses the Watson-Crick base-pairing of DNA to self-assemble structures at the nanoscale. DNA nanomachines are active structures that take energy from the system to drive a programmed motion. In this thesis, a new design for a reversible DNA motor and an automatically regenerating track is presented. Ensemble fluorescence measurements observe motors walking along the same 42nm track three times. A second new motor was designed to allow motors on intersecting tracks to block each other, which can be used to perform logical computation. Multiple design approaches are discussed. The chosen approach showed limited success during ensemble fluorescence measurements. The 'burnt bridges' motor originally introduced by Bath et al. 2005 was also sent down tracks placed along the inside of stacked origami tubes that are able to polymerise to micrometre lengths. Preliminary optical microscopy experiments show promise in using such a system for observing micrometre motor movement. Scaffold-based DNA origami is the technique of folding a long single-stranded DNA strand into a specific shape by adding small staple strands that hold it in place. Extended staple strands can be modified to functionalise the origami surface. In this thesis, the threading of staple extensions through a freely-floating origami tile was observed using single-molecule Förster resonance energy transfer (smFRET). Threading was reduced by bracing the bottom of the extension or by using a multilayered origami. smFRET was also used to investigate the process of staple repair, whereby a missing staple is added to a pre-formed origami missing the staple. This was found to be successful when the staple is single-stranded, and imperfect when partially double-stranded. Finally the idea for a new "DNA cage", a dynamic octahedron called the "Holliday Octahedron", is presented. The octahedron is made of eight strands, one running around each face. Mobile Holliday junctions at each face allow the stands to rotate causing a conformational change.
5

Computer Modelling Studies On DNA Triple Helices

Ravi Kiran, M 07 1900 (has links) (PDF)
No description available.
6

Stabilization of a Bimolecular Triplex by 3′-S-Phosphorothiolate Modifications: An NMR and UV Thermal Melting Investigation

Evans, K., Bhamra, I., Wheelhouse, Richard T., Arnold, J.R.P., Cosstick, R., Fisher, J. 21 March 2016 (has links)
Yes / Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson–Crick (W–C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3′-S-phosphorothiolate (3′-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. 1H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3′-SP modifications is more compact. The 3′-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures.
7

How does the chromatin remodeler ATRX identify its targets in the genome?

Nguyen, Diu Thi Thanh January 2014 (has links)
ATRX is a chromatin remodeling protein associated with X-linked Alpha-Thalassemia Mental Retardation syndrome and cancers that use the Alternative Lengthening of Telomere pathway. In the absence of ATRX there is a DNA damage response associated with telomeres and the expression of certain genes are perturbed. Recent findings (Law et al, 2010 Cell) have shown that ATRX is preferentially enriched at GC-rich tandem repeats in the genome. The mechanism for this localisation is unknown but may be related to the potential for these GC-rich tandem repeats to adopt non-B form DNA structures; ATRX has been shown to bind such structures (G4) in vitro. This study aims to understand the specific factors of the repeats that signal ATRX targeting. To address the research questions, an experimental system was developed, in which known targets, the ψζ VNTR and telomere repeats, were inserted into an inducible ectopic gene in the 293T-Rex cell line by site-directed recombination. ATRX was found to be enriched at the ectopic repeats compared to an endogenous negative control suggesting that it is recruited by the repeats independent of its original context. Furthermore, ATRX enrichment increased upon transcription of the ectopic gene, and this was dependent on the orientation of the repeat with the non-template strand being G-rich. Interestingly, when the repeat was transcribed, the distribution of ATRX across the repeats was asymmetrical with most ATRX binding downstream of the repeat. Moreover, there was a direct correlation between the repeat size and level of ATRX bound: the longer the repeat the higher the increase in ATRX enrichment. To determine the signal for ATRX binding, assays were performed to look for features which reflected the distribution of ATRX including H3K9me3, RNA polII, G4, R loops and DNA supercoiling. R loops look to be a strong candidate for the signaling of ATRX binding.
8

Advancements in Firefly Luciferase-Based Assays and Pyrosequencing Technology

Eriksson, Jonas January 2004 (has links)
Pyrosequencing is a new DNA sequencing method relying on thesequencing-by-synthesis principle and bioluminometric detectionof nucleotide incorporation events. The objective of thisthesis was improvement of the Pyrosequencing method byincreasing the thermal stability of firefly luciferase, and byintroducing an alternative DNA polymerase and a new nucleotideanalog. Furthermore, the development of a new bioluminescentassay is described for the detection of inorganicpyrophosphatase activity. The wild-type North American firefly(Photinus pyralis)luciferase is a heat-sensitiveenzyme, the catalytic activity of which is rapidly lost attemperatures over 30°C. Two strategies for increasing thethermostability of the enzyme are presented and discussed. Inthe first strategy, the solution thermodynamics of the systemis affected by osmolytes in such a way that heat-mediatedinactivation of the enzyme is prevented. In the secondstrategy, the enzyme is thermostabilized by mutagenesis. Bothstabilizing strategies can be utilized to allow bioluminometricassays to be performed at higher temperatures. For instance,both DNA polymerase and ATP sulfurylase activity could beanalyzed at 37°C. The osmolyte strategy was successfully employed forincreasing the reaction temperature for the Pyrosequencingmethod. By increasing the reaction temperature to 37°Cunspecific signals from primer-dimers and 3’-end loopswere reduced. Furthermore, sequencing of a challenging templateat 37°C, which previously yielded poor, non-interpretablesequence signals at lower temperatures was now possible. Introduction of a new adenosine nucleotide analog,7-deaza-2’-deoxyadenosine-5’-triphosphate (c7dATP) reduced the inhibitory effect on apyraseobserved with the currently used analog,2’-deoxyadenosine-5’-O-(1-thiotriphosphate)(dATPαS). Sequencing of homopolymeric T-regions has previously beendifficult with the exonuclease-deficient form of the DNApolymerase I large (Klenow) fragment. By using the DNApolymerase from bacteriophage T7, known as Sequenase, templateswith homopolymeric T-regions were successfully sequenced.Furthermore, it was found that the strand displacement activityfor both polymerases was strongly assisted if the displacedstrand had a 5’-overhang. In contrast, the stranddisplacement activity for both polymerases was inhibitedwithout an overhang, resulting in reduced sequencingperformance in double stranded regions. A firefly bioluminescent assay for the real-time detectionof inorganic pyrophosphatase in the hydrolytic direction wasalso developed. The assay is versatile and has a linearresponse in the range between 8 and 500 mU. Key words:bioluminescence, osmolytes, glycine betaine,thermostability, firefly luciferase, inorganic pyrophosphatase,inorganic pyrophosphate, Pyrosequencing technology, secondaryDNA-structures, Sequenase, Klenow-polymerase, reaction rates,temperature, c7dATP, dATPαS. / <p>QCR 20161027</p>
9

Oxidative Damage in DNA: an Exploration of Various DNA Structures

Ndlebe, Thabisile S. 17 May 2006 (has links)
Research efforts to determine the causes, effects and locations of mutations within the human genome have been widely pursued due to their role in the development of various diseases. The main cause of mutations in vivo is oxidative damage to DNA via oxidants and free radical species. Numerous studies have been performed in vitro to determine how oxidative damage is induced in DNA. Most of these in vitro studies require photosensitizers to initiate the oxidative damage through various mechanisms. For the purposes of this research, all the photosensitizers that were used initiated oxidative damage in DNA through the electron transfer mechanism. In the charge transport studies, an anthraquinone photosensitizer was covalently linked to the 5 end of DNA by a short carbon tether in order to determine the pattern of damage induced along the length of the DNA. Anthraquinone preferentially damages guanine bases. Our first work sought to determine the effects of charge transport through guanine rich quadruplex DNA dimers. The dimers were formed by the combination of two hairpins with duplex overhangs extending beyond the quadruplex region. This enabled the optimal comparison of the effects of charge transport between duplex and quadruplex DNA structures. Another area of research we pursued in this area was to determine the effects of charge transport in M-DNA (a novel DNA conformation that was reported to form in the presence of zinc ions at a pH above 8). Earlier work on M-DNA suggested that it behaved like a molecular wire. Our research attempted to determine the effects of charge transport on this structure in order to show the behavior of a DNA molecular wire as compared to the standard studies performed in this area on normal B-DNA structures. Lastly, in collaboration with Dr. Ramaiah and colleagues we designed some viologen linked acridine photosensitizers which were tested for any ability to cleave GGG bulges. In preliminary studies, these viologen linked acridine derivatives showed preferential cleavage for guanine bases. They were not covalently bound to DNA, although they could potentially form non covalent interactions with DNA such as intercalation and/or groove binding. Our overall research goal was to determine the extent and overall effect of oxidative damage (using different photosensitizers) on the various DNA structures mentioned above.
10

Advancements in Firefly Luciferase-Based Assays and Pyrosequencing Technology

Eriksson, Jonas January 2004 (has links)
<p>Pyrosequencing is a new DNA sequencing method relying on thesequencing-by-synthesis principle and bioluminometric detectionof nucleotide incorporation events. The objective of thisthesis was improvement of the Pyrosequencing method byincreasing the thermal stability of firefly luciferase, and byintroducing an alternative DNA polymerase and a new nucleotideanalog. Furthermore, the development of a new bioluminescentassay is described for the detection of inorganicpyrophosphatase activity.</p><p>The wild-type North American firefly<i>(Photinus pyralis)</i>luciferase is a heat-sensitiveenzyme, the catalytic activity of which is rapidly lost attemperatures over 30°C. Two strategies for increasing thethermostability of the enzyme are presented and discussed. Inthe first strategy, the solution thermodynamics of the systemis affected by osmolytes in such a way that heat-mediatedinactivation of the enzyme is prevented. In the secondstrategy, the enzyme is thermostabilized by mutagenesis. Bothstabilizing strategies can be utilized to allow bioluminometricassays to be performed at higher temperatures. For instance,both DNA polymerase and ATP sulfurylase activity could beanalyzed at 37°C.</p><p>The osmolyte strategy was successfully employed forincreasing the reaction temperature for the Pyrosequencingmethod. By increasing the reaction temperature to 37°Cunspecific signals from primer-dimers and 3’-end loopswere reduced. Furthermore, sequencing of a challenging templateat 37°C, which previously yielded poor, non-interpretablesequence signals at lower temperatures was now possible.</p><p>Introduction of a new adenosine nucleotide analog,7-deaza-2’-deoxyadenosine-5’-triphosphate (c<sup>7</sup>dATP) reduced the inhibitory effect on apyraseobserved with the currently used analog,2’-deoxyadenosine-5’-O-(1-thiotriphosphate)(dATPαS).</p><p>Sequencing of homopolymeric T-regions has previously beendifficult with the exonuclease-deficient form of the DNApolymerase I large (Klenow) fragment. By using the DNApolymerase from bacteriophage T7, known as Sequenase, templateswith homopolymeric T-regions were successfully sequenced.Furthermore, it was found that the strand displacement activityfor both polymerases was strongly assisted if the displacedstrand had a 5’-overhang. In contrast, the stranddisplacement activity for both polymerases was inhibitedwithout an overhang, resulting in reduced sequencingperformance in double stranded regions.</p><p>A firefly bioluminescent assay for the real-time detectionof inorganic pyrophosphatase in the hydrolytic direction wasalso developed. The assay is versatile and has a linearresponse in the range between 8 and 500 mU.</p><p><b>Key words:</b>bioluminescence, osmolytes, glycine betaine,thermostability, firefly luciferase, inorganic pyrophosphatase,inorganic pyrophosphate, Pyrosequencing technology, secondaryDNA-structures, Sequenase, Klenow-polymerase, reaction rates,temperature, c<sup>7</sup>dATP, dATPαS.</p>

Page generated in 0.0771 seconds