• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 12
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da fotocitotoxicidade dos corantes ciânicos com dois cromóforos em culturas de células neoplásicas / Photocytotoxicity study of cyanine dyes with two chromophores toward neoplasic cell cultures .

Murakami, Luciana Sayuri 29 October 2009 (has links)
Os corantes ciânicos com dois cromóforos possuem características espectrais e energéticas vantajosas para aplicação em Terapia Fotodinâmica (TFD) do câncer. Entretanto, sua fotoatividade contra neoplasias não foi ainda estudada nem in vivo nem in vitro. Nesta tese apresentamos os resultados dos estudos in vitro dos mecanismos da fotocitotoxicidade dos corantes ciânicos com dois cromóforos (BCD) com ângulos entre os cromóforos = 1800, 1500 e 900 contra células neoplásicas, com a finalidade de avaliar a potencialidade da aplicação dos BCD como fotossensibilizadores (FS) em TFD. Os estudos foram realizados em comparação com o fotossensibilizador Photogem®,que já está sendo aplicado em TFD. Foram estudados o efeito fototóxico, a distribuição intracelular do BCD e a contribuição de apoptose e necrose na morte celular induzida por ele. Além disso, foi realizada a busca da formulação farmacêutica adequada para aplicação tópica do BCD180. Nos estudos da fotocitotoxicidade foram utilizadas as células neoplásicas de melanoma murino B16F10, melanoma humano C8161, adenocarcinoma de colo retal humano HT29, leucemia T humano (Jurkat) e leucemia mielóde aguda humana Hl-60. A citotoxicidade foi estudada em função da dose da irradiação, da concentração do FS e do tempo de incubação das células com FS. Todos os compostos testados apresentaram baixa citotoxicidade no escuro, quando sob irradiação com luz visível (? > 600 nm) sua citotoxicidade aumentou consideravelmente. Observamos que para todos os tipos de células neoplásicas a fotocitotoxicidade dos BCD, depois de atingir seu máximo na variação do tempo de incubação, é igual ou ultrapassa a fotocitotoxicidade do Photogem® nas mesmas condições experimentais. O estudo comparativo do BCD180 e dos BCD150 e BCD90 mostrou que nas mesmas condições experimentais os dois últimos possuem fotocitotoxicidade maior do que o BCD180. O conjunto dos resultados obtidos mostra que os BCD? podem ser considerados promissores FS para TFD do câncer. Os estudos através de microscopia de fluorescência da distribuição intracelular do BCD180 e dos marcadores fluorescentes das mitocôndrias Mitotracker GreenTM e Rodamina 123 e do núcleo 4\',6-diamidino-2-phenylindole (DAPI) mostraram que o BCD180 se localiza preferencialmente na região das mitocôndrias. Os mecanismos da morte celular induzida pelo BCD180 foram analisados através do estudo da morfologia das células Jurkat, liberação da fosfatidilserina, liberação do citocromo c, ativação da caspase-3 e do efeito na citotoxicidade do BCD180 da proteína Bcl-2 (inibidor do citocromo c). A análise mostrou que a apoptose é a principal responsável pela morte celular induzida pelo BCD180 no escuro, enquanto que, sob irradiação luminosa, tanto a apoptose quando a necrose contribuem para a morte celular, e a contribuição da necrose aumenta com o aumento da concentração do BCD180 e do tempo de pós-irradiação. A apoptose ocorre, provavelmente, pela via intrínseca ou mitocondrial. Além disso, foram realizados os testes de permeação cutânea do BCD180 utilizando várias formulações farmacológicas e foi determinado que a mistura de 10% de monoleína em propilenoglicol possui melhores características entre todas as formulações testadas. / Cyanine dyes with two chromophores possess vantage spectral and energetic characteristics for application in Photodynamic Therapy (PDT) of cancer. At the same time, their photoactivity against neoplasias was not yet studied neither in vivo, nor in vitro. In this thesis, we present the results of in vitro studies of photocytotoxicity mechanisms of cyanine dyes with two chromophores (BCD) with angles = 180,150 and 90 between chromophores against neoplasic cells, with the objective to evaluate BCD potentiality to be applied as photosensitizers (PS) to Photodynamic Therapy (PDT). The studies were realized in comparison with photosensitizer Photogem®, which is already applied to PDT. The BCD? phototoxic effect, their intracellular distribution and contribution of the apoptosis and necrosis in the cell death induced by BCD were studied. Besides, the search of adequate pharmaceutical formulation for BCD180 topic application was realized. The neoplasic cell lines of melanoma B16F10 in mice, human melanoma C8161, human colon adenocarcinoma HT29, human T-cell leukemia (Jurkat) and human leukemia Hl-60, were used in the study of photocytotoxicity, which was studied as a function of irradiation dose, PS concentration and incubation time of cells with PS. All tested compounds demonstrated low cytotoxicity in the darkness, while under irradiation by visible light (? > 600 nm) their cytotoxicity considerably increased. It was observed that for all types of neoplasic cells BCD photocytotoxicity under the same experimental conditions is equal or exceeds that of Photogem® when reaches the maximum with the incubation time variation. The comparative study of BCD180 with BCD150 and BCD90 demonstrated that under the same experimental conditions two latter compounds possess photocytotoxicity exceeding that of BCD180. A set of the results obtained demonstrates that BCD can be considered as promising PS for PDT of cancer. The study of intracellular distribution of BCD180, and of mitochondria and nucleus fluorescence selective probes Mitotracker GreenTM, Rhodamine 123 and 4\',6-diamidino-2-phenylindole (DAPI) show that BCD180 is mostly localized in the region of mitochondria. The mechanisms of the cell death induced by BCD180 were analyzed in the study of Jurkat cells morphology, phosphatidyl serine and cytochrome c liberation, caspase-3 activation, and by protein Bcl-2 (cytochrome c inhibitor) effect on BCD180 cytotoxicity. The analysis demonstrated that apoptosis is the main responsible for the cell death induced by BCD180 in darkness, while under light irradiation both apoptosis and necrosis contribute to the cell death, and necrosis contribution increases with BCD180 concentration and post-irradiation time.The apoptosis is probably realized by an intrinsic or mitochondrial way. Besides, the tests of BCD180 cutaneum permeation were realized using various pharmacological formulations. It was determined that among all formulations tested, the mixture of 10% of monoleine in propylene glycol possesses the best characteristics.
2

Estudo da fotocitotoxicidade dos corantes ciânicos com dois cromóforos em culturas de células neoplásicas / Photocytotoxicity study of cyanine dyes with two chromophores toward neoplasic cell cultures .

Luciana Sayuri Murakami 29 October 2009 (has links)
Os corantes ciânicos com dois cromóforos possuem características espectrais e energéticas vantajosas para aplicação em Terapia Fotodinâmica (TFD) do câncer. Entretanto, sua fotoatividade contra neoplasias não foi ainda estudada nem in vivo nem in vitro. Nesta tese apresentamos os resultados dos estudos in vitro dos mecanismos da fotocitotoxicidade dos corantes ciânicos com dois cromóforos (BCD) com ângulos entre os cromóforos = 1800, 1500 e 900 contra células neoplásicas, com a finalidade de avaliar a potencialidade da aplicação dos BCD como fotossensibilizadores (FS) em TFD. Os estudos foram realizados em comparação com o fotossensibilizador Photogem®,que já está sendo aplicado em TFD. Foram estudados o efeito fototóxico, a distribuição intracelular do BCD e a contribuição de apoptose e necrose na morte celular induzida por ele. Além disso, foi realizada a busca da formulação farmacêutica adequada para aplicação tópica do BCD180. Nos estudos da fotocitotoxicidade foram utilizadas as células neoplásicas de melanoma murino B16F10, melanoma humano C8161, adenocarcinoma de colo retal humano HT29, leucemia T humano (Jurkat) e leucemia mielóde aguda humana Hl-60. A citotoxicidade foi estudada em função da dose da irradiação, da concentração do FS e do tempo de incubação das células com FS. Todos os compostos testados apresentaram baixa citotoxicidade no escuro, quando sob irradiação com luz visível (? > 600 nm) sua citotoxicidade aumentou consideravelmente. Observamos que para todos os tipos de células neoplásicas a fotocitotoxicidade dos BCD, depois de atingir seu máximo na variação do tempo de incubação, é igual ou ultrapassa a fotocitotoxicidade do Photogem® nas mesmas condições experimentais. O estudo comparativo do BCD180 e dos BCD150 e BCD90 mostrou que nas mesmas condições experimentais os dois últimos possuem fotocitotoxicidade maior do que o BCD180. O conjunto dos resultados obtidos mostra que os BCD? podem ser considerados promissores FS para TFD do câncer. Os estudos através de microscopia de fluorescência da distribuição intracelular do BCD180 e dos marcadores fluorescentes das mitocôndrias Mitotracker GreenTM e Rodamina 123 e do núcleo 4\',6-diamidino-2-phenylindole (DAPI) mostraram que o BCD180 se localiza preferencialmente na região das mitocôndrias. Os mecanismos da morte celular induzida pelo BCD180 foram analisados através do estudo da morfologia das células Jurkat, liberação da fosfatidilserina, liberação do citocromo c, ativação da caspase-3 e do efeito na citotoxicidade do BCD180 da proteína Bcl-2 (inibidor do citocromo c). A análise mostrou que a apoptose é a principal responsável pela morte celular induzida pelo BCD180 no escuro, enquanto que, sob irradiação luminosa, tanto a apoptose quando a necrose contribuem para a morte celular, e a contribuição da necrose aumenta com o aumento da concentração do BCD180 e do tempo de pós-irradiação. A apoptose ocorre, provavelmente, pela via intrínseca ou mitocondrial. Além disso, foram realizados os testes de permeação cutânea do BCD180 utilizando várias formulações farmacológicas e foi determinado que a mistura de 10% de monoleína em propilenoglicol possui melhores características entre todas as formulações testadas. / Cyanine dyes with two chromophores possess vantage spectral and energetic characteristics for application in Photodynamic Therapy (PDT) of cancer. At the same time, their photoactivity against neoplasias was not yet studied neither in vivo, nor in vitro. In this thesis, we present the results of in vitro studies of photocytotoxicity mechanisms of cyanine dyes with two chromophores (BCD) with angles = 180,150 and 90 between chromophores against neoplasic cells, with the objective to evaluate BCD potentiality to be applied as photosensitizers (PS) to Photodynamic Therapy (PDT). The studies were realized in comparison with photosensitizer Photogem®, which is already applied to PDT. The BCD? phototoxic effect, their intracellular distribution and contribution of the apoptosis and necrosis in the cell death induced by BCD were studied. Besides, the search of adequate pharmaceutical formulation for BCD180 topic application was realized. The neoplasic cell lines of melanoma B16F10 in mice, human melanoma C8161, human colon adenocarcinoma HT29, human T-cell leukemia (Jurkat) and human leukemia Hl-60, were used in the study of photocytotoxicity, which was studied as a function of irradiation dose, PS concentration and incubation time of cells with PS. All tested compounds demonstrated low cytotoxicity in the darkness, while under irradiation by visible light (? > 600 nm) their cytotoxicity considerably increased. It was observed that for all types of neoplasic cells BCD photocytotoxicity under the same experimental conditions is equal or exceeds that of Photogem® when reaches the maximum with the incubation time variation. The comparative study of BCD180 with BCD150 and BCD90 demonstrated that under the same experimental conditions two latter compounds possess photocytotoxicity exceeding that of BCD180. A set of the results obtained demonstrates that BCD can be considered as promising PS for PDT of cancer. The study of intracellular distribution of BCD180, and of mitochondria and nucleus fluorescence selective probes Mitotracker GreenTM, Rhodamine 123 and 4\',6-diamidino-2-phenylindole (DAPI) show that BCD180 is mostly localized in the region of mitochondria. The mechanisms of the cell death induced by BCD180 were analyzed in the study of Jurkat cells morphology, phosphatidyl serine and cytochrome c liberation, caspase-3 activation, and by protein Bcl-2 (cytochrome c inhibitor) effect on BCD180 cytotoxicity. The analysis demonstrated that apoptosis is the main responsible for the cell death induced by BCD180 in darkness, while under light irradiation both apoptosis and necrosis contribute to the cell death, and necrosis contribution increases with BCD180 concentration and post-irradiation time.The apoptosis is probably realized by an intrinsic or mitochondrial way. Besides, the tests of BCD180 cutaneum permeation were realized using various pharmacological formulations. It was determined that among all formulations tested, the mixture of 10% of monoleine in propylene glycol possesses the best characteristics.
3

Studies on Photocytotoxic Ferrocenyl Conjugates

Babu, Balaji January 2014 (has links) (PDF)
The present thesis deals with different aspects of the chemistry and photo-biology of various ferrocene-conjugates, their interaction with double helical DNA, DNA photocleavage and photo-enhanced cytotoxicity in visible light, localization and cellular uptake to study the mechanism of cell death. Phenyl analogues of the active complexes have been synthesized and used for comparison in biological assays. Chapter I presents an overview of cancer and its types, various treatments for cancer. A general overview on the Photodynamic Therapy, a new modality of light activated cancer treatment and its various possible mechanism of action, has been made. The promise of photoactivated chemotherapy is discussed with recently developed metal based antitumor agents. Biological applications of few ferrocene conjugates as anticancer and anti-malarial agents are discussed. The objective of the present investigation is also presented in this chapter. Chapter II presents the synthesis, characterization, structure, DNA binding, DNA photocleavage, photocytotoxicity and cellular localization of ferrocene-conjugated dipicolylamine oxovanadium(IV) complexes of curcumin. To explore the role of the ferrocenyl moiety the phenyl analogue of the ferrocenyl complexes is synthesized and used as a control for comparison purpose. Chapter III deals with the photo-induced DNA cleavage and photo-enhanced cytotoxicity of ferrocene-conjugated oxovanadium(IV) complexes of heterocyclic bases. The synthesis, characterization, structural comparisons, DNA binding, DNA photocleavage and photocytotoxic activity in visible light are discussed in detail. Chapter IV describes the synthesis, characterization and structure of ferrocene-conjugated oxovanadium(IV) complexes of acetylacetonate derivatives. The complexes are evaluated for DNA binding, DNA photocleavage and photocytotoxic activity in HeLa, MCF-7, 3T3 cells in visible light. The fluorescent nature of the complexes is used to study the cellular localization of the complexes and the mechanism of cell death induced by the complexes is also discussed. Chapter V presents the photocytotoxic effect of ferrocene-conjugated oxovanadium(IV) complexes of different curcuminoids in HeLa , HepG2 and 3T3 cells. Curcumin based fluorescence has been successfully used to study the cellular uptake and localization behavior of the complexes. The positive role of the ferrocenyl complex is evident from the ~4 fold increase in its photocytotoxicity compared to the phenyl analogue. The apoptotic mode of cell death is evident from nuclear co-staining using Hoechst dye. Chapter VI describes the synthesis, characterization and photochemotherapeutic efficacy of ferrocene conjugates of N-alkyl pyridinium salts. Mitochondria targeting property of ferrocene compound having n-butyltriphenylphosphonium group has been studied by JC-1 assay. FACS analysis showed significant sub G1/G0 phase cell-cycle arrest in cancer cells on visible light treatment. Finally, the summary of the dissertation and conclusions drawn from the present investigations are presented. The references in the text have been indicated as superscript numbers and compiled at the end of each chapter. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the structurally characterized complexes are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted. INDEX WORDS: Ferrocene conjugates Crystal structure DNA binding DNA photocleavage Photocytotoxicity Vanadium Cellular Imaging
4

Studies on Photocytotoxic Iron(III) and Cobalt(III) Complexes Showing Structure-Activity Relationship

Saha, Sounik January 2010 (has links) (PDF)
Photodynamic therapy(PDT) has recently emerged as a promising new non-invasive treatment modality for a large number of neoplastic and non-neoplastic lesions. Photoexcitation of a photosensitizing drug in the tumor tissue causes generation of reactive oxygen species which results in cell death. The current porphyrinic photosensitizers suffer a wide range of drawbacks leading to the development of the chemistry of alternative photosensitizing agents in PDT. Among them, the 4d and 5d transition metal-based photosensitizers have been explored extensively with the exception of the 3d metal complexes. The objective of this thesis work is to design and synthesize photoactive iron(III) abd cobalt(III) complexes and evalutate their photonuclease and photocytotoxic potential. Bioessential 3d metal ions provide an excellent platform for metal-based PDT drug designing as because of its varied spectral, magnetic and redox properties, with its complexes possessing rich photochemical behavior in aqueous and non-aqueous media. We have synthesized binary iron(III) complexes as netropsin mimics using amino acid Schiff bases derived from salicylaldehyde/napthaldehyde and arginine/lysine. The complexes were found to be good AT selective DNA binders and exhibited significant DNA photocleavage activity. To enhance the photodynamic potential, we further synthesized iron(III) complexes of phenolate-based ligand and planar phenanthroline bases. The DNA photocleavage activity of these complexes and their photocytotoxic potential in cancer models were studied. ROS generated by these complexes were found to induce apoptotic cell death. Ternary cobalt(III) complexes were synthesized to study the effect of the central metal atom. The diamagnetic cobalt(III) complexes were structurally dissimilar to their iron(III) analogues. Although the Co(III)/Co(II) redox couple is chemically and photochemically accessible but the Co(III)-dppz complex, unlike its iron(III)-dppz analogue, exhibited selective damage to hTSHR expressing cells but not in HeLa cells. A structure-activity relationship study on iron(III) phenolates having modified dppz ligands was carried out and it was found that electron donating group on the phenazine unit and an increase of the aromatic surface area largely improved the PDT efficiency. Finally, SMVT targeted iron(III) complexes with biotin as targeting moiety were synthesized and the in vitro efficacy of the complexes was tested in HepG2 cells over-expressing SMVTs and compared to HeLa amd HEK293 cells. The complexes exhibited higher phytocytotoxicity in HepG2 than in HeLa and cells and HEK293 cells. An endocytotic mode of uptake took place in HepG2 cells whereas in HEK293 cells, uptake is purely by diffusion. This is expected to reduce the side-effects and have less effect on cells with relatively less SMVTs. In summary, the present research work opens up novel strategies for the design and development of primarily iron-based photosensitizers for their potential applications in PDT with various targeting moieties.
5

Studies on Near-IR Light Photocytotoxic Oxovanadium Complexes

Prasad, Puja January 2013 (has links) (PDF)
The present thesis deals with different aspects of the chemistry of oxovanadium(IV) complexes, their interaction with double stranded DNA, photo-induced DNA cleavage, photo-enhanced cytotoxicity in visible light and red light and localisation and cellular uptake to understand the mechanism of cell death. Chapter I presents a general introduction on potential of transition metal complexes as photochemotherapeutic agents. A brief introduction about Photodynamic Therapy (PDT) as a new alternative to chemotherapy for treating cancer has been made. Various modes of interaction of small molecules with duplex DNA are described. Recent reports on metal-based photocytotoxicity, photo-induced DNA cleavage activity and cellular localization are presented in detail. Objective of the present investigation is also dealt in this Chapter. Chapter II of the thesis deals with the synthesis, characterization, DNA binding and photo-induced DNA cleavage activity of ternary oxovanadium(IV) complexes of ONO-donor 2-(2-hydroxybenzylideneamino)phenol (salamp) and phenanthroline bases to explore the photo-induced DNA cleavage activity in UV-A light of 365 nm and photocytotoxicity in visible light. Chapter III deals with the photo-induced DNA cleavage and photocytotoxicity of ternary oxovanadium(IV) complexes containing ONN-donor N-2-pyridylmethylidine-2-hydroxyphenylamine (Hpyamp) Schiff bases and phenanthroline bases. The objective of this work is to investigate the photo-induced DNA cleavage activity in near-IR light. Photocytotoxicity and cell cycle arrest have been studied in HeLa cancer cells. Chapter IV deals serendipitous discovery of planar triazinuim cationic species by vanadyl-assisted novel ring cyclization reaction. The compounds are synthesised, characterized and their DNA binding and anaerobic photoinduced DNA cleavage activity are presented. The importance of the thiazole moiety in the triazinuim species in cellular uptake has been investigated. Photocytotoxicity, localization and cell death mechanism have been studied in HeLa and MCF-7 cells. Chapter V describes the synthesis, characterization, DNA binding, photo-induced DNA cleavage activity and photocytotoxicity of oxovanadium(IV) complexes containing 2-(1H-benzimidazol-2-yl)-N-(pyridin-2-ylmethylene)ethaneamine (Hpy-aebmz) and curcumin as photosensitizer. The effect of conjugating naphthalimide on Hpy-aebmz on photoinduced DNA cleavage and photocytotoxicity has been studied. Cellular uptake, localization and mechanism of cell death induced by complexes have been investigated. Chapter VI presents ternary oxovanadium(IV) complexes having, 2-((1H-benzimidazol-2-yl)methylimino-methyl)phenol (Hsal-ambmz) and phenanthroline bases. The complexes were synthesized, characterized and their DNA binding property studied. Photo-induced DNA cleavage activity and photocytotoxicity in red light has been discussed. Anthracene has been conjugated to a tridentate ligand to investigate cellular uptake, localization and cell death mechanism. Mitochondria targeting property of the complexes having dipeptide has been studied and compared with clinically used drug Photofrin®. The references have been compiled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes, characterized structurally by single crystal X-ray crystallography, are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted.
6

Mechanistic Insights into the Role of IGFBP-2 in Glioblastoma

Shilpa, S Patil January 2015 (has links) (PDF)
Insulin like Growth Factor Binding Proteins (IGFBPs) 1 to 6 have important physiological functions of regulating half life and bioavailability of Insulin like Growth Factors (IGFs). Consequently, these have been known to play important roles in embryonic development, postnatal growth and disease conditions like cancer. However, the physiological roles of IGFBPs are diverse and not restricted only to the IGF regulation. These molecules are found to be tumor suppressors or promoters depending on the physiological contexts. IGFBP-2 has been established as a tumor promoter and found to be unregulated in several cancers including breast, ovarian, prostate cancer and glioblastoma (GBM). Various in vitro and in vivo studies have convincingly demonstrated the role of IGFBP-2 in inducing tumor cell proliferation, migration, invasion and chemoresistance. Increased plasma and tissue levels of IGFBP-2 have been associated with poor clinical outcome with respect to patients’ response to the therapy, relapse and overall survival. Various studies so far have demonstrated the role of IGFBP-2 in promoting glioma cell proliferation, migration, invasion, chemoresistance and determining stamens of GICs (Glioma Initiating Cells). However, the exact mechanisms underlying these functions remain unknown. Apart from being a diagnostic and prognostic indicator, IGFBP-2 has also been proposed as a therapeutic target. Therefore it is essential to understand mechanistic insights into pro-tumorigenic functions of IGFBP-2. Apart from the conventional function of regulating IGFs, IGFBP-2 has been shown to have several IGF independent functions. In a previous study, we reported IGFBP-2 as an upstream regulator of β-catenin signaling pathway in breast cancer. Interestingly, this study linked the association of higher expression of IGFBP-2 and β-catenin with the lymph node metastasis status of breast cancer. β-catenin signaling has been considered as one of the most important pro-tumorigenic pathways in several cancers including glioblastoma. Considering the importance of IGFBP-2 and β-catenin signaling pathways in glioblastoma, it becomes important to evaluate regulation of β-catenin activity by IGFBP-2 in glioma and address its clinical relevance. With this aim, the objectives of this study are,  To study mechanism of IGFBP-2 mediated regulation of β-catenin signaling in glioma cells and prognostic significance of IGFBP-2 and β-catenin expression in GBM tissues.  Isolation of human single chain variable fragment (scFv) against IGFBP-2 and its characterization as an inhibitor for IGFBP-2 pro-tumorigenic functions. Towards this, we established stable IGFBP-2 knockdown U251 cell line and IGFBP-2 over expressing LN229 and U87 cell lines. IGFBP-2 modulation in these glioma cell lines did not alter the rate of proliferation but there was a significant effect on cellular migration and invasion. In case of U251 cell line, there was a significant decrease in the intracellular levels of β-catenin while in IGFBP-2 over expressing cell lines there was a marked increase in intracellular β-catenin suggesting that IGFBP-2 is involved in the regulation of β-catenin in these cells. It was observed that this regulation of β-catenin was not because of its transcriptional regulation or regulation of canonical Wnt ligands Wnt1, Wnt2 and Wnt3a. To further delineate the pathway and understand the mechanism behind regulation of β-catenin, upstream regulators of β-catenin were analyzed. GSK3β is an important negative regulator of β-catenin which primes it for ubiquitination and proteasomal degradation. Phosphorylation of GSK3β at Ser9 position renders this enzyme inactive. In our study, it was observed that there was a significant downregulation of p-GSK3β in U251 cells with IGFBP-2 knockdown and upregulation in IGFBP-2 over expressing cell lines. Overexpression of IGFBP-2 in LN229 and U87 cell lines resulted in considerable decrease in the GSK3β mediated phosphorylation of β-catenin. This study unequivocally established that regulation of β-catenin by IGFBP-2 is via inactivation of GSK3β. Furthermore, regulation of GSK3β was found to be due to action of FAK following binding of IGFBP-2 to integrins. The expression pattern of IGFBP-2 and β-catenin protein in the tumor tissues of 112 GBM patients was studied and its correlation with patient survival was analysed. In this analysis it was observed that co-expression of IGFBP-2 and β-catenin is a strong predictor of patient prognosis. These results further implied the importance of understanding IGFBP-2 and β-catenin association in GBM pathology. One of the interesting observations in our study is that, not only full length IGFBP-2 protein but also C-terminal domain of IGFBP-2 was sufficient to regulate β-catenin and other IGFBP-2 mediated functions. This strongly asserts the importance of C-terminal region of IGFBP-2 as a tumor promoter. Towards an attempt to develop an inhibitor for IGFBP-2 actions, we screened a human single chain variable fragment (scFv) library using phage display technique. From this screening, one scFv (B7J) was identified which was a binder of full length IGFBP-2 as well as C-terminal domain of IGFBP-2. This scFv showed inhibition of IGFBP-2-cell surface interaction and also efficiently inhibited IGFBP-2-induced signaling pathways like ERK, FAK and GSK3β/β-catenin. B7J treatment also neutralized regulation of IGFBP-2 transcriptional targets like MMP2 and CD24. Gelatin zymography indicated the ability of B7J to decrease matrix metalloprotease activity in the conditioned medium of glioma cells. These effects ultimately reflected on the IGFBP-2-induced cellular migratory and invasive behaviour which was largely abrogated by B7J scFv treatment. Considering the therapeutic importance of scFvs because of their small size, better tumor penetration and tumor retention capacity than full length antibody molecules, such kind of strategy could be of great importance in the management of GBM. Altogether, this study provides a mechanistic insight of IGFBP-2 mediated actions involving integrin/FAK/GSK3β/β-catenin pathways and the possible role of this crosstalk in the aggressiveness of glioblastoma. This study also provides a proof of principle that an inhibitor like anti IGFBP-2 scFv could be of importance for controlling invasive glioblastoma.
7

Aspects Of The Chemistry Of Oxovanadiulm(IV) Complexes Showing Photo-Induced Cytotoxicity And DNA Cleavage Activity

Sasmal, Pijus Kumar 04 1900 (has links) (PDF)
The present thesis deals with different aspects of the chemistry of oxovanadium(IV) complexes, their interaction with DNA and protein and photo-induced DNA and protein cleavage activity and photocytotoxicity. Chapter I presents a general introduction on various modes of interactions of organic compounds and transition metal complexes capable of targeting DNA leading to DNA strand scission, emphasizing particularly the photo-induced DNA cleavage activities for their potential application in PDT. The mechanistic pathways associated with the DNA cleavage are discussed. A comparison has been made on the advantages of photoactive metal complexes over organic conjugates. Objective of the present investigation is also dealt in this Chapter. Chapter II of the thesis deals with the synthesis, characterization, DNA binding and photo-induced DNA cleavage activity of ternary oxovanadium(IV) complexes of N-salicylidene-S-methyldithiocarbazate (salmdtc) and phenanthroline bases to explore the photo-induced DNA cleavage activity in UV-A light of 365 nm. Chapter III presents the synthesis, characterization, DNA binding and photo-induced DNA cleavage activity of ternary oxovanadium(IV) complexes containing N-salicylidene-L-methionate (salmet) and N-salicylidene-L-tryptophanate (saltrp) Schiff bases and phenanthroline bases. The objective of this work is to investigate the photo-induced DNA cleavage activity in near-IR light and to see the effect of pendant thiomethyl and indole moieties in the DNA cleavage reactions. Chapter IV deals with the synthesis, characterization, DNA binding, red-light induced DNA cleavage activity and photocytotoxicity of ternary oxovanadium(IV) complexes having N-salicylidene-L-arginine (sal-argH) and N-salicylidene-L-lysine (sal-lysH) Schiff bases and phenanthroline bases. The important results include the visible light-induced DNA cleavage activity and photocytotoxicity of the complexes in human cervical HeLa cancer cells. Chapter V describes the synthesis, characterization, DNA binding and photo-induced DNA and protein cleavage activity and photocytotoxicity of oxovanadium(IV) complexes containing bis(2-benzimidazolylmethyl)amine and phenanthroline bases. The significant results include DNA cleavage activity in near-IR light and photocytotoxicity of the dppz complex in non-small cell lung carcinoma/human lung adenocarcinoma A549 cells in visible light. Further, we have studied the protein cleavage activity of the complexes in UV-A light of 365 nm by using bovine serum albumin (BSA) and lysozyme. Finally, Chapter VI presents the binary oxovanadium(IV) complexes of phenanthroline bases. We have studied their synthesis, characterization, DNA binding and photo-induced DNA and protein cleavage activity and photocytotoxicity. Photocytotoxicity of dppz complex has been studied in human cervical HeLa cancer cells in visible light. Photo-induced protein cleavage activity of the complexes has been studied in UV-A light of 365 nm by using BSA and lysozyme. The references have been compiled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes, characterized structurally by single crystal X-ray crystallography, are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any omission that might have happened due to oversight or mistake is regretted.
8

Chemistry Of Ferrocene Conjugates Showing DNA Cleavage And Photocytotoxic Activity

Maity, Basudev 07 1900 (has links) (PDF)
Ferrocene is an important molecule in the field of chemical biology due to its stability, unique redox property and significant lipophilicity for better cellular delivery. The medicinal importance of ferrocene is well recognized after its successful incorporation into breast cancer drug tamoxifen and antimalarial drug chloroquin. Designing ferrocene conjugated transition metal complexes is an interesting area of research in the field of photodynamic therapy, a new modality of light activated cancer treatment. The objective of the present thesis work is to develop photoactive ferrocene conjugates showing DNA photocleavage and photocytotoxic activity. We have synthesized the ferrocene conjugated imidazophenanthroline derivative which exhibits visible light induced DNA photocleavage activity and photocytotoxicity in HeLa cell line. The corresponding phenyl analogue is found to be inactive. Polypyridyl platinum(II) complexes of ferrocenyl as well as phenyl moiety are prepared and studied their interactions with calf thymus DNA. The cytotoxicity of the complexes enhance significantly upon irradiation of UV-A light of 365 nm. To enhance the photodynamic potential and to understand the role of organometallic ferrocenyl moiety, ferrocene conjugated terpyridyl copper(II) complexes having planar phenanthroline bases are prepared. The interaction of these complexes with duplex DNA and their photo-induced DNA cleavage and anticancer activity in HeLa cancer cells are studied. The complexes are able to generate ROS in the presence of visible light which causes DNA damage as well as cell death. The importance of ferrocenyl moiety is evidenced from the less activity of the corresponding phenyl analogues complex. We have prepared copper(II) complexes of ferrocenyl methyl dipicolylamine ligand to understand the role of terpyridyl moiety. These complexes lacking any conjugation between the copper(II) and the ferrocenyl moiety are found to be less active compared to the terpyridyl conjugated system. The copper(II) complexes are found to show undesirable dark cytotoxicity in the presence of cellular thiols like GSH. To overcome the dark toxicity problem and to understand the mechanistic aspects of DNA photocleavage and photocytotoxicity, a series of binary ferrocene conjugated terpyridyl complexes of Fe(II), Co(II), Cu(II) and Zn(II) are prepared and their DNA photocleavage and anticancer activity studied. The zinc(II) complex having redox-active ferrocenyl moiety and redox-inactive zinc(II) center exhibits significant PDT effect with low dark toxicity compared to its copper(II) analogue. The ferrocenyl moiety plays an important role towards showing photocytotoxic activity since its phenyl analogue is inactive in nature. Finally, the present thesis work opens up a new strategy for designing and developing new ferrocene based metal complexes as novel photosensitizers for PDT applications.
9

Studies On Lanthanide Complexes Showing Photo-activated DNA Cleavage And Anticancer Activity

Hussain, Akhtar 12 1900 (has links) (PDF)
This thesis work deals with different aspects of the chemistry of La(III) and Gd(III) complexes, their interaction with DNA and proteins, photo-induced cleavage of double-stranded DNA, photocytotoxic effect on cancer cells, cell death mechanism and cellular localization behaviour. Chapter I gives an introduction to the metal-based anticancer agents with special emphasis on clinically used drugs and the growing field of lanthanide therapeutics. An overview of the current strategies of cancer treatment, especially photodynamic therapy (PDT), is presented. Mode of small molecule-DNA interactions and the mechanistic aspects associated with DNA photodamage reactions and PDT effect are discussed with selected examples of compounds that are known to photocleave DNA on exposure to light of different wavelengths. A brief discussion on the various therapeutic applications of the lanthanide compounds is also made. Chapter II presents the synthesis, characterization, DNA binding, BSA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases to explore the UV-A light-induced DNA cleavage activity and photocytotoxicity of the complexes. Chapter III describes the synthesis, characterization, DNA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases with an aim to improve the design of the complexes to achieve better solution stability and DNA binding of the complexes. Chapter IV presents the synthesis, characterization, DNA binding, and UV-A light-induced DNA photocleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of pyridyl phenanthroline bases with an objective to improve the photoactivity of the complexes by introducing an additional pyridyl group. Cell death mechanism and confocal microscopic studies are also carried out to gain more insight into the PDT effect caused by light in the presence of the complex. Chapter V describes the synthesis and characterization of La(III) and Gd(III) complexes of terpyridine bases and acetylacetonate to study the complexes as a new class of photosensitizers to explore their DNA photocleavage activity and photocytotoxicity in HeLa cells. Effect of attaching a glucose moiety to the acetyl acetone (Hacac) ligand has been studied. The cellular uptake behaviour of the La(III) pyrenyl-terpyridine complexes has also been investigated. Finally, Chapter VI presents the synthesis and characterization of curcumin and glycosylated curcumin La(III) and Gd(III) complexes having terpyridine base with an objective to study the photoactivated anticancer activity of the complexes in visible light. This chapter describes the visible light-induced DNA cleavage activity and photocytotoxicity of the complexes by exploiting curcumin and glycosylated curcumin as the photosensitizer ligands. Study on the cellular uptake behavior of curcumin La(III) complexes having pyrenyl terpyridine ligand is also presented. The references have been assembled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes which are characterized structurally by single crystal X-ray crystallography are provided in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is sincerely regretted.
10

Platinum(II) Complexes as Dual Action DNA Crosslinking & Photochemotherapeutic Agents

Mitra, Koushambi January 2016 (has links) (PDF)
The thesis work delineates the rational design and successful syntheses of platinum (II) complexes for achieving light promoted dual action anticancer properties. The research work focuses on the syntheses, elaborate characterization including crystallization and mechanistic aspects of photodegradation processes. Theoretical studies were done to elucidate the properties of the excited states. The interaction of active Pt (II) species with DNA is also explored. The cellular studies include evaluation of the photo-induced cytotoxicities, mode of cell death, nature of reactive oxygen species (ROS), quantification of cellular Pt content and cellular and sub-cellular localization of the complexes. Chapter I provides an overview of the hallmarks of cancer and the current anticancer treatment modalities. It outlines the evolution of platinum based chemotherapeutic drugs, their mechanism of action and associated disadvantages. It also depicts the resurgence of metal complexes as photosensitizers for photoactivated chemotherapy, a selective tripartite strategy which permits light induced tumor destruction. Detailed literature reports of potential transition metal complexes showing light induced generation of ROS and controlled delivery of multiple drugs in tumor microenvironment are presented. The key challenges are the delivery and controlled activation of the clinically approved platinum (II) drugs. These prime objectives of the present investigation are depicted as a concluding segment of this introductory chapter. Chapter II includes the syntheses, characterization, evaluation of visible light induced cytotoxicity and interaction with DNA of novel ferrocenyl terpyridine appended platinum (II) complexes. Detailed mechanistic investigations revealed the important role of ferrocene in light triggered generation of reactive oxygen species. The effect of extensive conjugation on the photophysical properties of the complexes were also rationalized from theoretical calculations. The alteration in DNA binding affinities of the complexes on incorporation of a ferrocene unit in the platinum (II)terpyridines is also reflected. The work is the first report of the remarkable photocytotoxicity of platinum(II) complexes in visible light with nominal dark toxicity. Chapter III deals with novel ferrocenyl terpyridyl platinum(II) complexes having tumor targeting biotinylated acetylides which were synthesized for achieving selective photocytotoxicity only in cancer cells. An interesting observation was the red light promoted release of biotinylated acetylide ligands from platinum centre thereby generating mono-functional Pt(II) species. The possible covalent interactions of these platinum(II) species with DNA were also explored. These biotin complexes exhibit preferential cellular uptake in BT474 breast cancer cells over HBL-100 breast normal cells resulting in targeted photocytotoxicity in visible light. Chapter IV rationalizes design, syntheses and extensive characterization of 2-(phenylazo)pyridine based platinum(II) catecholates containing photosensitizers. The O^O donor ligand was chosen to release the more cytotoxic bi-functional platinum(II) species based on the prior knowledge of the labile Pt-O bonds. Interestingly, we observed glutathione triggered release of the catecholates imparting dual action anticancer properties to the molecules. Detailed mechanistic aspects indicated a possible reduction of the metal coordinated azo bond by cellular glutathione. The excellent photocytotoxicity in HaCaT and MCF-7 cells, cellular ROS generation and apoptosis, cellular Pt content and localization of these complexes are discussed. Chapter V addresses the advantages of navigating the platinum(II) complexes to mitochondrial DNA instead of genomic DNA. BODIPY appended platinum(II) catecholates were synthesized and the BODIPY core was modified to fine-tune the photophysical properties. The visible light induced growth inhibitory effects of the complexes and the mechanism of cell death in light exposed cells are explored. The novelty of this work is the mitochondria targeted remarkable photocytotoxicity as well as cellular imaging properties of the complexes making them ideal candidates for developing platinum based theranostic agents. Chapter VI presents the syntheses, characterization of unprecedented platinum(II) complexes of curcumin for dual action DNA crosslinking and photochemotherapeutic activities. The important feature of these Pt(II) prodrugs is the photorelease of curcumin from Pt(II) centre which results in controlled delivery of two potential anticancer agents. The visible light induced cytotoxicities of the complexes in HaCaT, BT474, T47D, Hep3B and HPL1D cells, their effect on the various cellular events, the interaction of the complexes with DNA and their cellular distribution in light and dark are explored. The appropriate references are provided at the end of each chapter and allocated as superscripts in the main text. The synthesized complexes are denoted by bold-faced numbers. Crystallography data of the complexes that are structurally characterized by single crystal X-ray crystallography are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements are provided for mentioned literature reports. Any omission is purely unintentional and is deeply regretted. INDEX WORDS: Platinum(II) complexes • Crystal structure • Visible light induced cytotoxicity • Cellular imaging • Photochemotherapeutic agents • DNA crosslink.

Page generated in 0.438 seconds