Return to search

Identification and Characterization of Novel CYP2A6 Variants in African American Slow Nicotine Metabolizers

Nicotine, the main addictive compound in tobacco, is metabolically inactivated to cotinine primarily by the hepatic enzyme CYP2A6. Substantial genetic variation in the CYP2A6 gene contributes to large variation in nicotine metabolism which alters numerous smoking behaviours. The goal of this study was to identify and characterize novel CYP2A6 variants. The CYP2A6 gene from African American phenotypically slow nicotine metabolizers was sequenced. Seven novel non-synonymous variants were identified: 468G>A (V68M), 1767C>G (I149M), 3515G>A (R265Q), 3524T>C (I268T), 4406C>T (T303I), 5661G>A (E390K), 6531T>C (L462P). They were introduced into a cDNA expression construct where they displayed lower protein expression, reduced nicotine metabolism to cotinine, and/or reduced stability as evaluated by western blotting and enzymatic activity. Genotyping assays were developed and assessed in 512 African Americans. Allelic frequencies ranged from 0.1-0.6% with a collective genotype frequency of 3.2%. Here we identified novel variants with reduced/loss of CYP2A6 activity, increasing our understanding of CYP2A6 variability.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/44055
Date19 March 2014
CreatorsPiliguian, Mark
ContributorsTyndale, Rachel
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.1772 seconds